
Online Workload Allocation and Energy
Optimization in Large Language Model

Inference Systems

Grant Wilkins

Churchill College

3 June 2024

Submitted in partial fulfillment of the requirements for the
Master of Philosophy in Advanced Computer Science

Total page count: 59

Main chapters (excluding front-matter, references and appendix): 41 pages (pp 12–52)

Main chapters word count: 11945

Methodology used to generate that word count: The Overleaf word count feature of the entire
document.

Declaration

I, Grant Wilkins of Churchill College, being a candidate for the Master of Philosophy

in Advanced Computer Science, hereby declare that this report and the work described

in it are my own work, unaided except as may be specified below, and that the project

report does not contain material that has already been used to any substantial extent

for a comparable purpose. In preparation of this project report I did not use text from

AI-assisted platforms generating natural language answers to user queries, including but

not limited to ChatGPT. I am content for my project report to be made available to the

students and staff of the University.

We note that similar results to Section 4.4 and 5.2 appeared at the 2024 ACM e-Energy

conference in the paper ”Hybrid Heterogeneous Clusters Can Lower the Energy Consump-

tion of LLM Inference Workloads” by Grant Wilkins, Richard Mortier, and Srinivasan

Keshav at https://dl.acm.org/doi/10.1145/3632775.3662830.

Signed: Grant Franklin Wilkins

Date: 3 June 2024

2

https://dl.acm.org/doi/10.1145/3632775.3662830

Work expands so as to fill

the time available for completion.

C. NORTHCOTE PARKINSON

Abstract

The rapid adoption of Large Language Models (LLMs) has furthered natural language pro-

cessing and helped text generation, question answering, and sentiment analysis. However,

deploying these models in production environments poses significant challenges, partic-

ularly for energy efficiency. This thesis addresses these challenges by investigating how

dynamic workload allocation can improve energy management for LLM inference within

heterogeneous data centers.

We first profile various LLMs’ energy consumption and runtime on different hardware

configurations, including NVIDIA GPUs, Apple Silicon, Intel CPUs, and AMD CPUs.

Our experimental results highlight the trade-offs between model complexity, the number

of input/output tokens, and system performance. We develop predictive models for energy

consumption and runtime, which are the foundation for our optimization strategies.

Our primary contributions include the development of a workload-aware heterogeneous

data center model that balances energy consumption and runtime based on operational

demands. Next, we propose an offline routing mechanism that partitions and routes

queries to minimize energy consumption and runtime while maintaining high accuracy.

Additionally, we outline an online routing approach that dynamically adjusts to incoming

queries in real-time, incorporating queue awareness to enhance resource utilization and

reduce wait times. Through extensive simulations, we demonstrate that our algorithms

can optimize energy consumption through trade-offs with accuracy. We allow operational

tuning in all simulations, depending on current system requirements.

This thesis contributes to the broader goal of sustainable computing by providing action-

able insights and practical solutions for optimizing LLM inference. Our findings under-

score the importance of energy-efficient AI deployment. We open-source the datasets and

benchmarks we developed during this research, enabling further exploration and innova-

tion in energy-efficient LLM inference.

4

Acknowledgements

This project would not have been possible without the wonderful support of Professor

Richard Mortier and Professor Srinivisan Keshav. Their guidance, experience, and ad-

vice were invaluable during this project. I acknowledge Clemson University’s Palmetto

Computer Cluster and Argonne National Laboratory’s Leadership Computing Resource

Center for their generous provision of compute. I would also like to thank Adam Wierman

for preliminary discussions about sustainable datacenters and environmental equity that

helped shape our research focus.

I also would like to thank the Churchill Scholarship Foundation for their generous finan-

cial and professional support to pursue my degree and have a wonderful year here at

Cambridge. Also, thank you to the many friends and colleagues I have met this year. All

of this would not have been as enriching, fun, or enjoyable without you all.

5

6

Contents

1 Introduction 12

2 Related Work 14

2.1 LLM Inference as a Service . 14

2.2 LLM Cluster Resource Management . 15

2.3 LLM Inference Energy Studies . 16

2.4 Energy-Aware Data Center Scheduling . 16

3 Problem Formulations 17

3.1 Workload Routing in a Heterogeneous Data Center 18

3.2 Workload Routing in a Data Center Serving Multiple LLMs 18

3.2.1 Modeling a Data Center . 18

3.2.2 Offline Routing Queries to Different LLMs 19

3.2.3 Online Routing Incoming Queries to Different LLMs 20

3.2.4 Queue-Awareness for Improved Quality of Service 22

4 Results 24

4.1 Measuring Energy Usage . 24

4.1.1 NVIDIA GPUs . 24

4.1.2 Apple Silicon CPU/GPU . 24

4.1.3 Intel CPUs . 25

4.1.4 AMD CPUs . 26

4.2 Model Choice . 26

4.2.1 LLMs Profiled . 26

4.2.2 Impact of Key-Value Dictionary Caching on Inference Runtime . . . 27

4.3 LLM Inference Performance on Diverse Clusters 28

4.3.1 Hardware Details of Test Systems 28

4.4 LLM Inference Performance . 28

4.4.1 Experimental Strategy . 28

4.4.2 Input Token Analysis . 29

4.4.3 Output Token Analysis . 29

4.4.4 Comparing the Input and Output Analyses 31

7

4.5 Impacts of Model Size . 32

4.5.1 Input Token Analysis . 32

4.5.2 Output Token Analysis . 33

4.5.3 Comparing the Input and Output Token Analysis 34

5 Energy-Optimal LLM Serving 36

5.1 Modeling Energy and Runtime for LLMs 36

5.1.1 Interdependence of Input and Output Tokens 36

5.1.2 Formulating Models for Energy and Runtime 37

5.1.3 Fitting Models with Ordinary Least Squares 37

5.2 Energy-Optimal Hybrid Data Center for Serving a Single LLM 38

5.2.1 Our Workload and Datasets . 38

5.2.2 A Threshold-Based Solution . 39

5.2.3 Simulation Results . 40

5.2.4 Balancing Energy Efficiency and Runtime Performance 42

5.3 Offline Query Routing to Multiple LLMs 42

5.3.1 Representing Workload Routing as an LP Problem 42

5.3.2 Results of Offline Routing . 43

5.4 Online Query Routing to Multiple LLMs 44

5.4.1 Simulation Model . 44

5.4.2 Results for Varying Operational Parameter, ζ 45

5.4.3 Results for Varying Arrival Rate, λ 47

5.4.4 Discussion of Online Routing Simulations 48

5.5 Complexity Analysis . 49

5.5.1 Offline Algorithm Complexity . 49

5.5.2 Online Algorithm Complexity . 49

5.5.3 Comparison of Online and Offline Algorithms 50

6 Discussion and Conclusion 51

6.1 Discussion of Limitations . 51

6.2 Conclusion . 52

8

List of Figures

3.1 System Diagram of Workload-Aware Data Center Hosting K LLMs 21

4.1 Performance of Various Systems and Models for Processing Variable Input

Tokens. Error bars are too small to be visible due to the low variance in

the data. 30

4.2 Performance of Various Systems and Models for Processing Variable Out-

put Token. Missing data points in M1-Pro and Palmetto Intel+V100 are

due to CUDA out-of-memory errors. Due to the low variance in the data,

error bars are too small to be visible. 31

4.3 Performance of Different LLM Parameter Counts for Processing Variable

Input Tokens . 33

4.4 Performance of Different LLM Parameter Counts for Processing Variable

Output Tokens . 34

5.1 Kernel Density Estimation of Token Count Distribution for Alpaca [51],

GSM8K [9], and Python Codes [15] . 39

5.2 Energy Consumption for Shifting the Threshold of τ ∗in, τ
∗
out, and

√
τ ∗inτ

∗
out. . 41

5.3 Mean Runtime per Query for Shifting the Threshold of τ ∗in, τ
∗
out, and

√
τ ∗inτ

∗
out. 41

5.4 Varying Operational Parameter ζ for Offline Simulation. Due to very sim-

ilar allocations of queries, the round-robin and random routing lines are

indistinguishable . 43

5.5 Varying Operational Parameter ζ for Online Simulation without Queue

Awareness (λ = 5.2 queries/s). Due to very similar query allocations, the

round-robin and random routing lines are indistinguishable. 46

5.6 Varying Operational Parameter ζ for Online Simulation with Queue Aware-

ness (λ = 5.2 queries/s). Due to very similar query allocations, the round-

robin and random routing lines are indistinguishable. 46

5.7 Impacts of Varying Operational Parameter ζ for Mean Wait Time for

Queries (λ = 5.2 queries/s) . 46

5.8 Varying Arrival Rate λ for Online Simulation without Queue Awareness

(ζ = 0.5). Due to very similar query allocations, the round-robin and

random routing lines are indistinguishable. 47

9

5.9 Varying Arrival Rate λ for Online Simulation with Queue Awareness (ζ =

0.5). Due to very similar query allocations, the round-robin and random

routing lines are indistinguishable. 47

5.10 Impacts of Varying Arrival Rate λ for Mean Query Wait Time (ζ = 0.5) . 48

10

List of Tables

4.1 LLM Energy Consumption and Runtime 26

4.2 Our System Configurations . 28

5.1 ANOVA Results for LLM Energy Consumption and Runtime. 36

5.2 OLS Parameters Across Models for S=Swing AMD+A100 38

5.3 Summary of OLS Regression Results Across Models 38

11

Chapter 1

Introduction

Large Language Models (LLMs) such as OpenAI’s GPT-4 [38] and Google’s Gemini [52]

are revolutionizing natural language processing (NLP), text generation, and translation.

The ability of LLMs to understand and generate human-like language has opened up new

possibilities for AI-enabled applications, impacting many industries [12].

However, deploying LLMs for inference requires large pools of heterogeneous accelerators

to perform expensive tensor calculations, requiring systems designers to rethink traditional

cloud service techniques. One of the main factors in determining resource allocation for

LLMs is their on-device memory requirements [3, 22, 26, 60]. As models increase in

size and complexity, their memory requirements grow. These models then require more

accelerators and, in general, consume more energy [8].

Because of this trend, the energy consumption of AI systems has become a significant

concern. Many studies have highlighted the large energy budgets that training and serv-

ing large-scale models require [8, 28, 29]. Therefore, it is necessary to consider strategies

for optimizing the energy efficiency of these systems without compromising performance.

This focus is particularly relevant for LLM inference, where, for example, over a year of

serving LLM inference can consume over 25× more energy than training a model [8]. The

environmental implications of these energy-intensive AI systems stretch beyond energy

usage into carbon emissions and water consumption associated with cooling data cen-

ters [28, 29]. However, this study focuses primarily on energy consumption as a proxy

for environmental and sustainable efforts. We acknowledge that more dimensions of this

problem affect the environment and contribute to climate change.

We hypothesize that by evaluating LLM performance on various computational resources

(e.g., different generations, makes, and models of GPUs and CPUs) and varying aspects

of LLM inference (e.g., number of input and output tokens, number of parameters),

it is possible to minimize energy consumption while maintaining high throughput and

accuracy. However, finding an optimal hardware and workload-aware strategy is complex,

requiring consideration of a wide range of factors, including the characteristics of the LLMs

12

themselves, the energy usage of a cluster’s hardware, and the impact of different workloads

on inference tasks.

Objectives and Contributions

This thesis addresses the challenge of optimizing energy consumption and runtime for

LLM inference by leveraging data from various systems with different hardware. We aim

to present optimal system and routing configurations, investigate the impact of LLM

complexity parameters on energy efficiency, and determine if the trade-off between model

complexity and inference speed aligns with energy consumption patterns across different

hardware architectures.

We begin in Chapter 2 with a survey of literature on serving LLM inference, the energy

consumption of LLMs, and ways to perform energy-efficient scheduling, detailing also how

our study improves upon the known solutions and extends the field. Next, in Chapter 3,

we formalize our scheduling and energy efficiency goals using predictive models for energy,

runtime, and accuracy.

To further achieve our objectives, we first analyze several LLMs’ energy consumption

and runtime with different parameter sizes across various hardware configurations and

inference workloads. The models we develop in Chapter 3 and the results detailed in

Chapter 4, form the foundation for developing highly explainable, predictive models for

the runtime and energy consumption based on the number of input and output tokens

for different LLMs and hardware systems. These models are crucial for understanding

how LLM complexity parameters, such as the number of model parameters and token

input/output size, affect energy efficiency in specific system configurations, as discussed

in Chapter 4 and further explored in Chapter 5.

Additionally, we compare the energy efficiency and performance characteristics of LLM

inference across different hardware platforms. This comparison reveals whether the re-

lationship between model complexity and inference speed is consistent across various

architectures. Our findings in Chapter 5 highlight the implications for deploying LLM

inference services on hardware, considering cost, scalability, and energy efficiency. We

propose solutions such as a workload-aware scheduler for heterogeneous clusters, an of-

fline mechanism for routing inference workload batches to different LLMs, and a tunable

online routing approach that trades off energy consumption and accuracy.

One of the key contributions of this thesis is the open sourcing of comprehensive datasets

and a benchmark suite for evaluating the energy efficiency of LLM inference 1. Our results,

framework, and simulations provide researchers and practitioners with valuable tools to

assess the impact of their design choices and optimize LLM deployment in production

environments.

1See https://github.com/grantwilkins/energy-inference.git.

13

https://github.com/grantwilkins/energy-inference.git

Chapter 2

Related Work

2.1 LLM Inference as a Service

Determining how to efficiently offer LLM inference as a service is an open question. Due

to their large memory footprint and often expensive runtimes, there have been many

attempts to optimize their deployment.

Several systems have been developed to enhance the performance and efficiency of LLM in-

ference services. AlpaServe [30] implements model parallelism and devises model-parallel

placements that align with request arrival patterns, aiming to optimize the quality of

service. FastServe [57] introduces an innovative skip-join Multi-Level Feedback Queue

(MLFQ) scheduler and employs iteration-level preemption to enhance job completion ef-

ficiency. This approach allows for dynamic resource allocation adjustment based on job

priorities and current system load, thereby reducing latency and improving throughput.

SpotServe [36] focuses on deploying LLM serving systems on preemptive instances, aim-

ing for a balance between costs and performance. By utilizing spot instances, which are

typically more cost-effective than reserved instances, SpotServe can reduce operational ex-

penses while maintaining acceptable performance levels. Addressing service quality, Wang

et al. [55] study the efficiency and reliability of LLM serving, highlighting the challenges

of maintaining high-quality service while managing computational loads effectively. This

perspective is an essential first step in defining the quality of service for LLM systems.

While these systems highlight the ongoing efforts to optimize LLM inference services

for offline and online scenarios, ours is the first to take an energy-optimal scheduling

approach. As the demand for real-time AI services grows, sustainable inference serving

will be crucial in meeting quality of service requirements while balancing environmental

effects.

14

2.2 LLM Cluster Resource Management

As discussed, LLMs require substantial computational resources and heterogeneous accel-

erators to perform tensor computations efficiently. As these models grow, their memory

footprint increases correspondingly, exacerbated by the precision of the floating-point

representation used for parameters.

Several services have been developed to address these challenges and optimize LLM al-

location and runtime across various resource scenarios, each with unique software con-

straints. Alpa [61] automates both inter- and intra-operator parallelism, aligning model

parallelism with the computational capabilities of the available hardware. DeepSpeed [3]

offers a multi-GPU inference solution that minimizes latency and maximizes throughput

for dense and sparse transformers, utilizing heterogeneous memory across CPU, NVMe,

and GPU to support models with more memory requirements than the aggregate GPU

memory.

Orca [58] introduces dynamic batch scheduling for LLM inference, aiming to balance the

load across available accelerators and minimize inference latency. Similarly, FlexGen [48]

targets high-throughput LLM inference using limited resources, such as a single com-

modity GPU. FlexGen combines memory and computation from GPU, CPU, and disk,

employing linear programming to optimize tensor storage and access patterns.

LLM-PQ [60] focuses on phase-aware partitioning and adaptive quantization for serving

LLMs on heterogeneous clusters. This approach dynamically adjusts model partitioning

and quantization levels based on the current phase of the inference task, improving effi-

ciency and performance. PagedAttention [26] addresses managing the KV cache memory

for each request. Inspired by virtual memory and paging techniques, PagedAttention

reduces memory waste and allows flexible sharing of KV cache, significantly improving

throughput for popular LLMs.

While these existing systems excel in optimizing specific aspects of LLM serving, our

approach provides a comprehensive framework that balances energy efficiency, runtime,

and accuracy through both offline and online routing algorithms. Our approach’s unique

contribution lies in its holistic optimization strategy, which dynamically adjusts to oper-

ational demands, balancing multiple objectives rather than focusing on a single perfor-

mance metric. Our work will integrate seamlessly depending on the optimization strategy

chosen from the above service. A data center operator only needs to create new en-

ergy consumption and runtime models, and then our system meshes with the outlined

research. By integrating energy consumption models, runtime predictions, and workload-

aware scheduling, we offer a versatile and adaptive solution that enhances the overall

efficiency and sustainability of LLM inference in production environments.

15

2.3 LLM Inference Energy Studies

Characterizing the energy consumption of LLM inference has been a recent topic of in-

terest. Desislavov et al. [11] provide a timely examination of trends in AI inference

energy consumption, arguing that while performance has increased dramatically, energy

consumption has not escalated at the same pace, thanks to hardware optimizations and

algorithmic innovations. This perspective is crucial as it suggests the potential for fur-

ther optimizations in LLM inference tasks, which are typically energy-intensive. Chien et

al. [8] discuss more significant trends in LLM inference energy consumption and do not

focus on device-level energy modeling benefits. Samsi et al. [47] explore the energy con-

sumption of Meta’s Llama LLMs for different batch sizes and numbers of GPUs, showing

the potential energy benefits of these tunable parameters. Stojcovik et al. [49] discuss the

impacts of GPU frequency scaling on the energy efficiency of serving LLMs; however, at

this point, this work is only a characterization and not an applied analysis. Anderson et

al. [4] propose carbon-aware data center software that could complement physical hard-

ware adjustments by making energy and carbon metrics visible to application developers,

encouraging more energy-efficient coding practices.

Our study is the most extensive comparison of energy consumption and LLM inference

runtime across various systems and models.

2.4 Energy-Aware Data Center Scheduling

There is a large body of work that focuses on energy-aware scheduling [13, 21, 31, 35,

45, 50], but none focus on the specific challenge of developing workload-aware models

for LLM inference. Focusing on energy consumption, Hu et al. [20] analyze deep learn-

ing workloads in GPU data centers, offering insights into energy conservation strategies

through workload scheduling. This research aligns with our objectives by confirming the

important role of scheduling in reducing energy footprints. Li et al. [27] introduce Clover,

which promises to minimize carbon emissions for serving AI inference. Unlike our study,

this work does not explicitly consider LLMs or a per-model function to capture energy

and runtime, instead focusing on carbon-emission patterns for a data center. Gu et al. [17]

presents PowerFlow, a tool that uses clock-frequency data from GPUs to minimize energy

consumption as a scheduling decision. However, their study does not consider LLMs and

is not necessarily workload-aware. Patel et al. introduce POLCA [39], which can pro-

vide a way to automatically power-cap based on existing workload traces. Li et al. [29]

focuses on delivering a geographic load balancing perspective for AI inference, optimizing

environmental equity. However, their model considers large-scale workload traces, not

device-level energy and runtime data.

16

Chapter 3

Problem Formulations

The deployment of LLMs for inference in production cloud environments requires careful

consideration of the energy efficiency, runtime, and model accuracy. This chapter presents

a series of problem formulations that allow us to optimize these factors within data centers

hosting multiple LLMs. In this chapter and further analysis, we adopt the following basic

notation.

In our setup, a query is a textual input to an LLM with a known number of output

tokens.1 Q represents a batch of queries that have been “tokenized,” such that each

item in this multiset is a tuple of an input and output token count, (τin, τout) ∈ N2, and

Q = {(τin, τout)1, . . . , (τin, τout)i} . Depending on the problem’s focus, we aim to divide

this workload among diverse hardware or LLMs. In cases where we consider time-varied

arrivals, we define a time-evolving function, Q(t) : [0,∞) → (N2)
m
, to represent the m-

tuples of the number of input and output tokens for each query that have arrived in our

system by time t.

We denote available hardware systems as a set S = {1, . . . , S}. We denote available LLMs

as a set K = {1, . . . , K}.

Functions eK,S(τin, τout), rK,S(τin, τout), aK,S(τin, τout) : N2 → [0,∞) are used to denote

models for the energy consumption, runtime, and accuracy of a given LLM K on hardware

S. At points where there is only one type of hardware or LLM, it is necessary to drop

the K or S, at which point we will clarify the context. Each of these functions has a

normalized counterpart êK,S, r̂K,S, âK,S : N2 → [0, 1] that maps the estimated values to

[0,1] to make these different metrics comparable to aid in optimization. We normalize by

dividing by the largest known value of each quantity during the optimization or online

routing, meaning that the normalization adjusts with arriving values.

ζ ∈ [0, 1] is an operational parameter for trade-offs in our various cost functions.

1Realistically, the number of output tokens is not known a priori but can be estimated through
analyzing past input-output pairs like in Zheng et al. [62].

17

3.1 Workload Routing in a Heterogeneous Data Cen-

ter

Our first objective is to construct a simple model of operational demands of a hetero-

geneous data center with multiple hardware types hosting a single LLM. We drop the

K-index mentioned above because there is only one LLM. We define this problem’s cost

as a trade-off between energy and runtime by assigning queries to different hardware sys-

tems, S = {1, . . . , S}. To optimally route to other hardware, we present the following

optimization problem.

min
{QS}S∈S

∑
S∈S

∑
(τin,τout)∈QS

ζêS(τin, τout) + (1− ζ)r̂S(τin, τout) (3.1)

s.t.
⋃
S∈S

QS = Q (3.2)

QI ∩QJ = ∅ for I ̸= J,∀I, J ∈ S. (3.3)

êS(τin, τout) is the normalized energy consumed by system S during inference. r̂S(τin, τout)

is the normalized inference runtime. QS is the portion of Q that is assigned to run on

system S.

We formulate this general assignment problem (GAP) that ensures each query is processed

exactly once, optimizing for either energy efficiency or quick response times, depending on

the operational demands reflected in ζ. Certain systems may perform better on specific

tasks based on the workload characteristics, such as the need for rapid response times.

Adjustments in ζ allow the data center to change the focus between minimizing energy

consumption and reducing runtime as operational priorities change.

3.2 Workload Routing in a Data Center Serving Mul-

tiple LLMs

Building upon the previously outlined problem, we consider another scenario of hosting

several LLMs in a data center with a single type of CPU+GPU resource. Adopting a

similar optimization framework, we will use our energy performance data for different

LLMs K = {1, . . . , K} to optimize energy and accuracy by optimizing hosting multiple

LLMs in a single system.

3.2.1 Modeling a Data Center

Here, we outline our assumptions about the resources available in our data center. Assume

we have nK ∈ N GPUs assigned to each LLM, K, with Nsystem ∈ N total GPUs. Deciding

how many instances of each model our system should have ready is outside the scope of this

18

work. Practical considerations for this would be customer usage history, the relationship

between nK and Nsystem, performance data, and the reliability of the service. Therefore,

we assume that there is a proportionality γK of the accelerators in our system assigned

to each K. We have that γK ∈ [0, 1],∀K, and
∑

K∈K γK = 1. We can see that each LLM

K has γKNsystem GPUs assigned to them and
⌊
γKNsystem

nK

⌋
instances within our system.

3.2.2 Offline Routing Queries to Different LLMs

In practice, most datacenters serving LLM inference will be a variation of an online and

interactive service. However, one can imagine potential applications of an offline frame-

work such as in overnight data analysis, routing batch arrivals, or for training performance

models to automate decision-making. Therefore, we proceed with developing a framework

to design an offline routing framework for serving multiple LLMs.

With a model of the resources in our data center, we need to design a framework that

will route our workload to minimize the energy and maximize the accuracy of our system.

Keeping our notation for a workload of queries is a set, Q, then we can adopt the following

notation for a disjoint, multiset partition of our query workload to each LLM, Q =

⟨QK⟩K∈K.

Accuracy is not a straightforward metric, so we attempt to quantify it here. Many

benchmarks attempt to capture the “accuracy” of an LLM. Examples of these are the

MMLU [18], HellaSwag [59], etc., and each have their criticisms. To sidestep the problems

introduced by each specific test for accuracy [34], we will use the HuggingFace Leader-

board’s [5] average accuracy that takes an average of every single recorded accuracy

available from their repository of datasets and tests. Therefore, moving forward, when we

refer to the accuracy of an LLM, we refer to the score, AK ∈ [0, 1], which we take from

this leaderboard.

For optimization purposes, we must define a function based on the constant AK . We

propose aK : N2 → [0,∞), a monotonically increasing function based on the number of

input and output tokens that a model K ingests and produces. Therefore, for a model K

processing tokens (τin, τout) we have

aK(τin, τout) = AKτin + AKτout. (3.4)

Let ζ denote a tuning parameter that lets a data center operator trade off energy for ac-

curacy. Let |Q| represent the total number of queries in our workload, and |QK | represent

the total number of queries each model K processes. We can then formulate our workload

19

assignment problem as

min
QK∈Q

∑
K∈K

∑
(τin,τout)∈QK

ζêK(τin, τout)− (1− ζ)âK(τin, τout) (3.5)

s.t., 0 <
|QK |
|Q|

< 1 (3.6)

Q =
⋃
K∈K

QK (3.7)

QI ∩QJ = ∅, I ̸= J,∀I, J ∈ K, (3.8)

where Equations 3.7 and 3.8 define the partition coverage of the workload, and Equation

3.6 ensures we give each LLM some queries. In our implementation, we dynamically

normalize our energy and accuracy measures across all the queries to allow us to adjust

the scale of costs across different models and query combinations.

3.2.3 Online Routing Incoming Queries to Different LLMs

Offline problems can be helpful for a description of a problem with complete information;

however, in real-world inference-serving scenarios, there is limited information about the

future. This section details the transition from an offline problem formulation to an online

dynamic routing approach, which involves rethinking the system architecture to handle

real-time data flow and decision-making. In the offline setup, a scheduler sends queries

to different LLMs with a static snapshot of the system’s state. However, in an online

scenario, these decisions must be responsive to the continuously changing state of the

system.

The first step in the transition involves defining the system state that encapsulates all

necessary information to make routing decisions. The system state includes:

• QK(t) : [0,∞)→ (N2)
mK - the total multiset of tuples for the number of input and

output tokens, with cardinality mK , assigned to each model K by time t.

• qK - the number of items in the queue awaiting processing on a model K.

• costK - the current cost associated with the model K that considers the queries

currently processed and in the queue.

In Figure 3.1, we show a basic diagram of the flow of queries through a data center

performing real-time scheduling of LLM inference for a set of K models. Based on the

cost structure, the goal is to minimize energy consumption with accuracy in mind using

the models for accuracy and energy.

The dynamic routing algorithm is at the core of the online model. It is responsible for

assessing incoming queries and assigning them to the appropriate model queue based on

the current system state and predictive analytics. Upon the arrival of a new query, the

20

.

.

.

.

.

.

.

.

.

Figure 3.1: System Diagram of Workload-Aware Data Center Hosting K LLMs

system evaluates which model’s queue to route the query to by minimizing a cost function

that balances the trade-offs between processing time, energy consumption, and accuracy.

We summarize this process in Algorithm 1.

Algorithm 1 Handle Incoming Query with Dynamic Routing

1: procedure HandleQuery(query, ζ, t)

2: if t == 0 then

3: cost = {K : 0 for each K in K}
4: q = {K : deque() for each K in K}
5: end if

6: min cost←∞ ▷ Temporary variable to find minimum

7: K∗ ← None ▷ Temporary variable to assign model

8: for each K in K do

9: cost with query ← cost[K] + CalculateCost(K, query, ζ)

10: if cost with query < min cost then

11: min cost← cost with query

12: K∗ ← K

13: end if

14: end for

15: q[K∗].append(query)

16: cost[K∗] += min cost

17: end procedure

18: function CalculateCost(K, query, ζ)

19: (τin, τout)← query

20: return ζ × êK(τin, τout)− (1− ζ)× âK(τin, τout)

21: end function

21

At the time, t = 0, we initialize the cost, cost[K] for each model, K, to zero, and allow the

queue, q[K], to also be empty. Then, as queries are sent to each model K, we update the

queue, q[K], and the associated cost, cost[K]. We iterate over each model for an incoming

query to calculate the potential cost of assigning the query to K. We then update the

minimum cost and select the model based on the estimated cost. After considering all

models, we put the query into the K∗’s queue and update our cost for the K∗ with the

added cost.

This process allows us to route queries to different LLMs at the rate at which we can

calculate the cost, allowing rapid decision-making that attempts to increase the utilization

of resources across the data center while minimizing the cost associated with energy with

accuracy in mind.

3.2.4 Queue-Awareness for Improved Quality of Service

Due to the formulation of Algorithm 1, with shifts in ζ, specific models can receive

poor utilization rates, and model runtime time and queue wait times can be lengthy.

For example, if there were three models with increasing accuracy and parameter size, if

ζ = 0 the smallest model would receive no queries, due to the system only optimizing

for accuracy. Similarly, if ζ = 1.0, the largest models would experience drought due to

minimizing energy. In both cases, wait times can vary depending on the arrival rate of

queries to the system. Therefore, to ensure reasonable usage of all models, it is essential

to introduce a notion of queue-awareness through a penalty. Also, in an online and

interactive service, users expect minimal latency, and for an LLM, this can be gauged

via time-to-first-token (TTFT) [1, 26]. Therefore, if we reduce the amount of time spent

in the queue, we can decrease the TTFT. This optimization requires polling the lengths

of the queues and then using this to penalize over-assignment to a single model. We

formulate our queue awareness in Algorithm 2.

Algorithm 2 Queue-Awareness Calculation

1: function CalculateCostWithQueueLength(K, query, q)

2: base cost, penalty ← 0

3: (τin, τout)← query

4: base cost← ζ × êK(τin, τout)− (1− ζ)× âK(τin, τout)

5: penalty ← 0.1× len(q[K])

6: return base cost + penalty

7: end function

This penalty assures that the queue for a model K is not overloaded, mitigating growing

mean wait times for queries. We note that 0.1 is a scale factor chosen from a sensitivity

analysis that allows for ζ still to control the level of accuracy and energy trade-off and

does not force query allocation to be equal across all models. This strategy is critical to

22

ensure that the edge cases of ζ do not underutilize resources in our data center and do

not result in poor service for users.

23

Chapter 4

Results

4.1 Measuring Energy Usage

We monitor the energy usage of inference on each system using the CPU/GPU power

usage, runtime, and VRAM memory usage to provide a comprehensive view of each

model’s energy footprint on each hardware system. We consider NVIDIA GPUs, Apple

Silicon CPU/GPU, Intel CPUs, and AMD CPUs. We note that in all cases, regardless of

system, power, P , energy, E, and time ∆t, are all positive real numbers. Note also that

the relationship between power and energy is E = P∆t,

4.1.1 NVIDIA GPUs

We use PyJoules [42], a Python-based energy measurement library, to quantify the energy

consumption associated with inference on NVIDIA GPUs. PyJoules provides an interface

to NVML [37], the NVIDIA Management Library, providing a granular and accurate energy

usage assessment for targeted devices. This tool offers real-time energy consumption of

GPUs for a given tracked process, which is a key component of our analysis given the

GPU-heavy computation involved in LLM inference.

4.1.2 Apple Silicon CPU/GPU

No standard energy measurement tools are available for profiling energy and power us-

age for Apple Silicon through an API like PyJoules or RAPL. Therefore, we employ a

subprocess-based approach to poll macOS’ powermetrics utility, providing a detailed

view of the energy usage during model inference. To capture the energy consumption

of the M1 GPU, we execute the powermetrics command through a Python subprocess.

We record the power draw of each process, including detailed metrics for CPU and GPU

power consumption at 200ms intervals. We chose this interval after testing to find the

finest granularity measurement without incurring a large overhead (< 1% of CPU from

top) for the I/O of piping the large powermetrics output into a file. The energy monitor-

24

ing is conducted concurrently with the model inference. A separate thread is dedicated to

running the powermetrics command, ensuring uninterrupted and real-time data collec-

tion. Post-operation, the collected data is processed to extract the recorded power data

and then integrated by time to find the energy consumption. We confirm we are the only

process on the GPU during inference; therefore, the energy, ETotal,GPU , is straightforward

to calculate for each recorded power value, PGPU,i, for a corresponding time step size ∆ti.

ETotal,GPU =
∑
i

PGPU,i∆ti (4.1)

The CPU power draw data is less direct as other processes reside on the CPU. However,

an “energy impact factor”, αi ∈ [0, 1], through powermetrics allows us to infer how

much of the power is due to our Python inference process. Therefore, we calculate the

CPU energy, ETotal,CPU , by multiplying PCPU,i by the “energy impact factor,” αi, at each

timestep:

ETotal,CPU =
∑
i

(αiPCPU,i)∆ti. (4.2)

4.1.3 Intel CPUs

We also use PyJoules for Intel CPUs, as in our approach for NVIDIA GPUs. This tool

supports RAPL (Running Average Power Limit) interfaces, enabling us to obtain fine-

grained energy consumption data. We focus on two primary RAPL domains: Package

0 and Package 1, which correspond to the entire CPU package’s energy consumption,

including cores, non-core components, and DRAM on supported platforms. We denote

Packages 0 and 1 with subscripts 0 and 1, respectively.

PyJoules allows us to capture the energy usage of these domains in real time, enabling us

to profile the energy consumption specifically during model inference tasks. To account for

base energy consumption unrelated to our inference process, we conduct a pre-analysis

phase to measure the CPU’s average idle power draw. This idle measurement is then

subtracted from the total energy consumption during inference to accurately determine

the net energy expenditure attributable to the inference process.

We instrument our code to query the RAPL readings at the start and end of the inference

task, calculating the energy consumption as follows:

ETotal,CPU =
∑
i

(
(P0,i − P0,Idle) + (P1,i − P1,Idle)

)
∆ti, (4.3)

where P0,i and P1,i represent the power draw from Package 0 and Package 1, respec-

tively, and P0,Idle and P1,Idle represent the average idle power draw of the CPU packages,

respectively.

25

4.1.4 AMD CPUs

AMD CPUs do not have a Python API, so instead, we utilize AMDµProf’s timechart

feature, which provides detailed power draw metrics for every core on the chip at fine-

grained intervals. By polling AMDµProf at 100ms intervals, we can capture the power

draw of each physical core throughout the model inference process.

To ensure we accurately attribute the energy consumption to our inference task, we mon-

itor the CPU core residency through psutil and power draw in tandem. This tool allows

us to identify and record the specific cores actively engaged in the inference process at

each time step. The total energy consumption for the inference task is then calculated by

summing the power usage across all active cores and integrating over the time of inference,

as follows:

ETotal,CPU =
∑
i

(∑
core

Pcore,i∆ti

)
(4.4)

where Pcore,i represents the power draw of an individual core at each time step, i.

4.2 Model Choice

4.2.1 LLMs Profiled

Our study employs several open-source LLMs, summarized in Table 4.1. We vary param-

eter counts to highlight trade-offs between runtime, energy consumption, and accuracy.

These models also represent diverse architectures and training corpora. We subject each

model to a series of standardized NLP tasks to evaluate energy consumption during in-

ference.

Table 4.1: LLM Energy Consumption and Runtime

LLM (#Params) Disk Storage Size (GB) Min # A100s AK(%) [5]

Falcon (7B) 14.48 1 44.17
Falcon (40B) 83.66 3 58.07
Llama-2 (7B) 13.48 1 50.97
Llama-2 (13B) 26.03 1 55.69
Llama-2 (70B) 137.98 4 64.52
Mistral (7B) 15.0 1 60.97

Mixtral (8x7B) 93.37 3 68.47

Below, we summarize key aspects of each model and its family/architecture.

Falcon 7B was developed by the Technical Institute of the United Arab Emirates and

is a decoder-only model with 7 billion parameters trained on a diverse dataset of 1,500

billion tokens [2]. Its applications span multiple use cases due to its broad training on

the RefinedWeb dataset [40]. Falcon 40B is the mid-tier version of the Falcon series. It

was trained on a similarly curated dataset of nearly five trillion tokens, ensuring diverse

26

linguistic and cultural representation. It is notable for its efficiency, using significantly

less resources than comparable models like GPT-3 [6] and Chinchilla AI [19].

Llama-2 (7B) [53] was developed by Meta AI and features 7 billion parameters, mak-

ing it suitable for a broad range of NLP tasks while being relatively resource-efficient.

Optimized for general-purpose applications, it provides solid performance in tasks such

as text generation, summarization, and translation. Llama-2 (13B) offers enhanced ac-

curacy and a deeper understanding of more complex queries and datasets. This model

balances its memory demands, as aforementioned, with performance, making it a good

choice for applications requiring more detailed text understanding and generation capa-

bilities. Llama-2 (70B) is an advanced model designed for complex problem-solving. This

model performs better than smaller models in specialized tasks, such as medical diagnosis

from textual data, legal document analysis, and emulating conversations. Due to its huge

storage size and network density, it requires significant computational resources, including

at least 4×NVIDIA A100 40 GB GPUs.

Mistral 7B [23] was developed by Mistral AI, a company developing small, efficient, open-

source models. It was engineered for both high performance and efficiency. It utilizes

innovative attention mechanisms like grouped-query attention and sliding window atten-

tion to handle long sequences efficiently and reduce memory requirements during inference.

This small model outperforms larger models across various NLP benchmarks, particularly

in reasoning, mathematics, and code generation tasks. Mixtral (8x7B) [24] is a Sparse

Mixture of Experts (SMoE) model [14] that optimizes computational efficiency by using

a subset of parameters per token. It performs well in many languages and complex tasks

like mathematics and code generation.

4.2.2 Impact of Key-Value Dictionary Caching on Inference Run-

time

Caching key-value (KV) dictionaries is an optimization strategy aimed at reducing infer-

ence runtime for similar prompts in Large Language Models (LLMs) [41]. A KV dictionary

encapsulates the collection of input and output tokens processed by the model, facilitating

quicker decoding in subsequent inferences by reusing previously computed results [54].

LLMs cache a KV pair in the dictionary for each new token during the inference process.

By storing this mapping, the model bypasses the need to regenerate them for each token

that appears in the subsequent request, accelerating the encoding and decoding process.

This is particularly beneficial when queries share similar tokens, as the model can leverage

pre-computed KV pairs to expedite output generation.

To establish a baseline for LLM performance devoid of any enhancements, we turn off

KV caching. This approach ensures that each inference is handled independently, with

the model reconstructing the KV dictionary from scratch for every prompt. Although

27

this method results in longer inference times, it consistently measures the model’s raw

computational requirements and latency. Such a baseline is important for establishing

the performance of a model without the influence of optimizations. By understanding the

baseline capabilities of LLMs, we can better identify an upper limit on energy consumption

and runtime for our models of choice.

4.3 LLM Inference Performance on Diverse Clusters

4.3.1 Hardware Details of Test Systems

We show our systems we profile in Table 4.2. We consider these systems as they demon-

strate three prominent CPU manufacturers and different generations of GPUs.

System Name CPU GPU(s) per Node DRAM per Node VRAM per GPU

MacBook Pro 10-core M1 Pro 14-core M1 Pro 32 GB -
Swing AMD+A100 2×64-core AMD EPYC 7742 8×NVIDIA A100 1 TB 40 GB
Palmetto Intel+V100 40-Core Intel Xeon 6148G 2×NVIDIA V100 376 GB 16 GB

Table 4.2: Our System Configurations

We note that for the M1-Pro, we do not show Falcon (7B) results as its inference was

nearly 10× slower than Llama-2 (7B) and Mistral (7B) on the same system.

Across all of our systems, we use a standard Conda environment with Python 3.12.0.

We utilize PyTorch v2.2.1, Transformers v4.39.1, Tokenizers v0.15.2, Numpy v1.26.4,

HuggingFace v0.22.1, and Accelerate v0.28.0.

For the Swing AMD+A100 system, we specifically use CUDA v11.4.0, AMD-µProf v4.1.124,

PyJoules v0.5.1.

4.4 LLM Inference Performance

4.4.1 Experimental Strategy

We conduct a series of experiments to evaluate the performance of different system con-

figurations across various models, systematically varying the number of input and output

tokens to measure the effect on runtime and energy consumption under two main experi-

mental conditions.

For the first experimental condition, we execute inference requests with increasing input

token counts, ranging from 8 to 2048 tokens, while maintaining a fixed output token count

of 32. This setup allows us to isolate the impact of the number of input tokens on the

system’s performance and energy efficiency.

In the second set of experiments, we vary the output token limit from 8 to 4096 tokens,

keeping the input token count constant at 32. This approach helps us understand how

28

increasing the number of output tokens affects the runtime and energy consumption of

the systems tested.

We conduct each experiment in a randomized order to mitigate any potential bias the

testing sequence introduces. To ensure the reliability of our results, we repeat each con-

figuration until either (1) the measured runtime is within 0.5 seconds of the actual mean

runtime with 95% confidence or (2) we conduct 25 trials for each setting.

4.4.2 Input Token Analysis

Here, we present the impact on runtime, energy consumption per token, and through-

put for LLMs across different hardware configurations while varying the number of input

tokens. We perform these experiments using the suite of systems outlined in Table 4.2

with the models outlined in Section 4.2. In our experiments on the Palmetto Intel+V100

system, the V100 GPU had an out-of-memory error beyond 1024 output tokens for Fal-

con (7B).

Our runtime measurements show a significant increase as input tokens grow. As depicted

in Figure 4.1(a), all systems exhibit a nonlinear escalation in runtime with increasing

token counts, with the M1-Pro system showing the most significant magnitude. This trend

highlights the computational burden imposed by larger input token counts, particularly

on smaller systems that are not as well designed to handle extensive workloads.

For all systems, we notice that throughput follows a ”roofline model” with increasing input

tokens [56]. Figure 4.1(b) illustrates these dynamics, indicating an increase in throughput

for all systems until a certain point where inference becomes bound by compute and not

by the overhead of the software, as described by roofline performance models [56].

Energy efficiency varies markedly across different systems. The M1-Pro demonstrates con-

sistently low energy consumption per token, particularly for smaller input token counts,

as shown in Figure 4.1(d). This efficiency reflects the M1-Pro’s design optimization for

low-power operations. In contrast, the Swing AMD+A100, while capable of handling

more significant token inputs more efficiently, consumed more energy per token for small

workloads yet became more energy efficient at larger input token counts, underscoring a

trade-off between workload size and energy efficiency.

4.4.3 Output Token Analysis

Here, we examine the performance trends associated with increasing the number of output

tokens for our LLMs and systems of interest, specifically focusing on runtime, energy

consumption per token, and throughput. In our experiments, the M1-Pro could not

generate more than 512 output tokens without taking more than 6 hours per prompt. For

the Palmetto Intel+V100 system, the V100 GPU had an OOM error beyond 1024 output

tokens for Falcon (7B) and all models beyond 2048 tokens.

29

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
−1

10
0

10
1

10
2

10
3

R
un

tim
e

(s
)

(a) Runtime

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
0

10
1

10
2

10
3

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

(b) Throughput

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
2

10
3

10
4

10
5

To
ta

l E
ne

rg
y

(J
)

System
Swing AMD+A100
Palmetto Intel+V100
M1-Pro

Model
Falcon (7B)
Llama-2 (7B)
Mistral (7B)

(c) Total Energy

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
0

10
1

10
2

E
ne

rg
y

pe
r T

ok
en

 (J
/to

ke
ns

)

System
Swing AMD+A100
Palmetto Intel+V100
M1-Pro

Model
Falcon (7B)
Llama-2 (7B)
Mistral (7B)

(d) Energy per Token

Figure 4.1: Performance of Various Systems and Models for Processing Variable Input
Tokens. Error bars are too small to be visible due to the low variance in the data.

Runtime significantly increases with the number of output tokens across all systems. As

illustrated in Figure 4.2(a), there is a large rise in runtime. This increase indicates the

substantial computational x LLMs require to generate successive output tokens.

In Figure 4.2(b), we observe a decrease in throughput across all systems as the number

of output tokens increases. This trend highlights the inherent computational complexity

in generating larger sequences of tokens in LLM tasks. As the output token count grows,

the system must reprocess each additional token, recalculating the context and updating

internal model states [54]. This effect increases the total computation per query and leads

to greater processing time per token, consequently lowering the overall throughput.

As expected, we notice that in Figure 4.2(c), there is an increasing amount of energy

consumed for the number of output tokens. This trend is roughly the same as that

expressed in Figure 4.2(a), as also expected from the relationship between energy and

power.

Energy consumption per token also shows an increasing trend as output tokens grow. We

notice this trend in Figure 4.2(d), underscoring the energy-intensive nature of producing

larger outputs. While generally more energy-efficient, systems such as the M1-Pro begin

30

to consume more energy per token as output demands increase, reflecting the intensive

processing involved in output generation.

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
−1

10
0

10
1

10
2

10
3

10
4

R
un

tim
e

(s
)

(a) Runtime

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
−1

10
0

10
1

10
2

10
3

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

(b) Throughput

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
1

10
2

10
3

10
4

10
5

10
6

To
ta

l E
ne

rg
y

(J
)

System
Swing AMD+A100
Palmetto Intel+V100
M1-Pro

Model
Falcon (7B)
Llama-2 (7B)
Mistral (7B)

(c) Total Energy

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
−1

10
0

10
1

10
2

10
3

E
ne

rg
y

pe
r T

ok
en

 (J
/to

ke
ns

)

System
Swing AMD+A100
Palmetto Intel+V100
M1-Pro

Model
Falcon (7B)
Llama-2 (7B)
Mistral (7B)

(d) Energy per Token

Figure 4.2: Performance of Various Systems and Models for Processing Variable Output
Token. Missing data points in M1-Pro and Palmetto Intel+V100 are due to CUDA

out-of-memory errors. Due to the low variance in the data, error bars are too small to
be visible.

4.4.4 Comparing the Input and Output Analyses

When comparing Figure 4.1(a) and Figure 4.2(a), we observe that increases in the num-

ber of output tokens result in a more considerable increase in runtime than increases

in input token counts. Similarly, the total energy consumed, as shown in Figure 4.1(c)

and Figure 4.2(c), follows the same trend for the number of input versus output tokens.

The computational complexity of processing input tokens primarily involves encoding the

input context, which occurs once per input sequence and is semi-linear. In contrast, gen-

erating output tokens is inherently iterative. Each new output token requires the model

to run through all its layers to predict the next token based on an ever-expanding con-

text, which includes both the initial input and all previously generated output tokens [54].

This ongoing computation involves recalculating attention across an increasing number

of tokens, updating hidden states, and generating a probability distribution over the vo-

cabulary for each new token. Consequently, as the number of output tokens grows, the

31

computational load increases significantly, leading to more significant runtime increases

than processing input tokens.

The impacts on runtime also translate to throughput, depicted in Figure 4.1(b) and Fig-

ure 4.2(b). There is a noticeable decline in throughput as output tokens increase, more

so than input tokens. The decrease in throughput for output tokens is primarily due

to the heightened computational requirements for generating subsequent tokens, where

each token’s generation slows down as the sequence lengthens. Furthermore, our analysis

shows that the energy per token increases as output tokens grow. The energy required to

generate each output token becomes significant due to longer passes through the trans-

former network. We contrast this with the energy consumption when processing input

tokens, which increases more slowly.

4.5 Impacts of Model Size

A key question is how runtime and energy consumption scales with increasing parameter

counts. Larger models1 are often more accurate and have higher quality answers to given

queries, as shown by their performance on widely-cited tests like the MMLU [18] and

HellaSwag [59].

We conduct a series of experiments to evaluate the performance of differing workloads

across models of increasing parameter counts. We perform the same test as mentioned in

Section 4.4.1 to vary the number of input and output tokens to measure their effects on

runtime and energy consumption. Also, we fix the batch size at 32. Due to larger models’

memory constraints, we only test on the Argonne Swing AMD+A100 system.

4.5.1 Input Token Analysis

Figure 4.1 presents the impact of varying numbers of input tokens on the runtime, through-

put, and energy per token for various LLMs. The results depict a clear trend: as the

number of input tokens increases, the runtime tends to increase, while the throughput

in Figure 4.3(b) plateaus, following a ”roofline” model [56], like for the smaller models.

Specifically, the runtime increase is most dramatic for larger models like Llama-2 (70B)

and Falcon (40B), likely due to the higher computational burden these models sustain as

they process more extensive input sequences. The energy consumption per token demon-

strates similar trends, with smaller models exhibiting lower energy per token than larger

models.

Figure 4.3(c) shows that a model will consume more total energy for a higher parameter

count. This effect worsens energy efficiency in Figure 4.3(d), as smaller models consume

less energy for the same amount of work. This finding is unsurprising, as smaller and less

1By larger, we refer to models that are greater than 7B parameters, as these were the smallest models
we consider in our testing.

32

dense models should perform much faster but with lower accuracy, as shown in Table 4.1.

Therefore, system operators and users must consider this trade-off when choosing models

and a relationship we will explore when solving Equation 3.5.

An outlier to all of these cases is Mixtral (8x7B), which has a higher throughput and energy

efficiency than other large models at larger input tokens. This LLM’s sparse mixture-

of-experts architecture (SMoE) [24, 44] allows it to activate only 12B parameters on

average by selecting two expert sub-models. This selection phase has a runtime and energy

overhead for classifying the prompt, apparent in Figures 4.3(a) and 4.3(c), which the model

overcomes for larger workloads. Therefore, for SMoE, one gets the accuracy advantages

of a large model with less energy and lower runtime than the denser counterparts.

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
0

10
1

10
2

R
un

tim
e

(s
)

(a) Runtime

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
1

10
2

10
3

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

(b) Throughput

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
2

10
3

10
4

10
5

To
ta

l E
ne

rg
y

(J
)

Falcon (7B)
Falcon (40B)
Llama-2 (7B)
Llama-2 (13B)

Llama-2 (70B)
Mistral (7B)
Mixtral (8x7B)

(c) Total Energy

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

Number of Input Tokens

10
0

10
1

10
2

E
ne

rg
y

pe
r T

ok
en

 (J
/to

ke
ns

)

Falcon (7B)
Falcon (40B)
Llama-2 (7B)
Llama-2 (13B)

Llama-2 (70B)
Mistral (7B)
Mixtral (8x7B)

(d) Energy per Token

Figure 4.3: Performance of Different LLM Parameter Counts for Processing Variable
Input Tokens

4.5.2 Output Token Analysis

Figure 4.4 illustrates how changes in the number of output tokens affect runtime, through-

put, and energy consumption per token across different LLMs. Notably, the runtime ex-

hibits a steep increase with larger output token counts, consistent across all models but

especially significant for high-parameter models such as Falcon (40B) and Llama-2 (70B).

Throughput decreases as the number of output tokens increases. This inverse relationship

33

highlights the time required to generate each additional token, which involves more exten-

sive interaction between model layers and successive passes through the LLM to generate

each token [54]. Energy per token also increases with the number of output tokens and

parameters. This increase is particularly sharp in larger models like Falcon (40B).

Again, Mixtral (8x7B) demonstrates greater energy efficiency than its large parameter

counterparts. Therefore, even in high output token generation cases, an SMoE architec-

ture can yield improvements in energy efficiency.

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
−1

10
0

10
1

10
2

10
3

10
4

R
un

tim
e

(s
)

(a) Runtime

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
−1

10
0

10
1

10
2

10
3

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

(b) Throughput

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
1

10
2

10
3

10
4

10
5

10
6

10
7

To
ta

l E
ne

rg
y

(J
)

Falcon (7B)
Falcon (40B)
Llama-2 (7B)
Llama-2 (13B)

Llama-2 (70B)
Mistral (7B)
Mixtral (8x7B)

(c) Total Energy

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

Number of Output Tokens

10
−1

10
0

10
1

10
2

10
3

E
ne

rg
y

pe
r T

ok
en

 (J
/to

ke
ns

)

Falcon (7B)
Falcon (40B)
Llama-2 (7B)
Llama-2 (13B)

Llama-2 (70B)
Mistral (7B)
Mixtral (8x7B)

(d) Energy per Token

Figure 4.4: Performance of Different LLM Parameter Counts for Processing Variable
Output Tokens

4.5.3 Comparing the Input and Output Token Analysis

Comparing Figures 4.3(a) and 4.4(a), we observe that increasing the number of output

tokens results in a more significant increase in runtime than increasing the number of input

tokens. Also, larger parameter LLMs require far more runtime than smaller models. The

reason is because generating each new output token requires the model to reprocess the

entire sequence, which involves recalculating attention weights and updating the context

with each additional token. The computations involved in this process must pass through

a larger and denser network of nodes as the parameter count increases, leading to a higher

runtime and energy consumption.

34

Figures 4.3(b) and 4.4(b) illustrate that throughput decreases more rapidly as output to-

kens increase compared to input tokens. This decline is due to the increased time required

to generate each successive output token, which reduces the overall token generation rate.

However, the throughput for input tokens plateaus after a certain point, aligning where

the system becomes compute-bound rather than constrained by input token processing.

In general, smaller models have much higher throughput than the larger models.

Figures 4.3(c) and 4.4(c) show that total energy consumption rises significantly with the

number of parameters and output tokens, more so than with input tokens. Moreover,

Figure 4.4(d) indicates that the energy consumption per token also increases sharply with

the number of output tokens and parameters. This trend underscores the higher energy

demand associated with generating longer sequences in larger models, as each additional

output token requires more computational effort and power, along with the model size,

exacerbating this phenomenon.

The analysis highlights a key consideration for system designers and operators. While

processing input tokens involves a single pass through the model to encode the context,

generating output tokens is more resource-intensive. The number of parameters in a

model also can lead to a large increase in energy consumption and runtime.

35

Chapter 5

Energy-Optimal LLM Serving

5.1 Modeling Energy and Runtime for LLMs

5.1.1 Interdependence of Input and Output Tokens

From observing our results, a logical question is: are the number of input and output

tokens independent in their effect on energy consumption and runtime? The following

table presents the ANOVA results for assessing the effects of the number of input tokens,

the number of output tokens, and their interaction on the total energy consumption and

runtime for LLM inference. To collect this data we perform a grid search from 8 to 2048,

in increments of powers of two, for the space of input and output tokens to eliminate the

bias of holding the input or output size constant. This analysis includes data aggregated

across all models in Table 4.1.

Table 5.1: ANOVA Results for LLM Energy Consumption and Runtime.

Metric Variable Sum of Squares df F -value p-value

Energy (J)
Number of Input Tokens 5.17× 1010 8 15.86 3.79× 10−17

Number of Output Tokens 4.13× 1011 8 126.63 1.22× 10−65

Interaction 1.18× 1011 64 4.53 4.67× 10−15

Runtime (s)
Number of Input Tokens 3.43× 105 8 12.97 2.34× 10−14

Number of Output Tokens 2.78× 106 8 104.98 4.56× 10−60

Interaction 8.21× 105 64 3.88 1.92× 10−12

The significance of the main effects and the interaction term highlights the combined

influence of the input and output tokens on the energy consumption and runtime of LLM

inference. The number of input tokens and number of output tokens substantially impact

energy consumption and runtime, with output tokens having a more significant effect size

as indicated by the higher F value. Also, the interaction term shows that the number

of input and output tokens have a coupled effect on energy consumption and runtime.

Finally, if we take a significance value of α = 0.01, then the high F values and extremely

36

low p-values for these effects confirm their statistical significance and the robustness of

these findings across different LLMs.

5.1.2 Formulating Models for Energy and Runtime

Therefore, we can use the results in Table 5.1 to guide the creation of models to predict

the energy consumption and runtime of LLMs for use in optimization problems like in

Equations 3.1 and 3.5. We know that for accurate models based on the number of input

and output tokens, an interaction term needs to be used to combine them.

We propose a model to describe the total energy consumption for a model K on a system

S as a function of input and output token counts, τin and τout, respectively:

eK,S(τin, τout) = αK,S,0τin + αK,S,1τout + αK,S,2τinτout, (5.1)

where αK,S,0, αK,S,1, αK,S,2 ∈ R are parameters unique to each model and system, deter-

mined through ordinary least squares regression.

Similarly, we propose the following model to describe the total runtime for a model K on

system S as a function of input and output tokens, τin and τout, respectively:

rK,S(τin, τout) = βK,S,0τin + βK,S,1τout + βK,S,2τinτout, (5.2)

where βK,S,0, βK,S,1, βK,S,2 ∈ R are also unique to each model K and system S.

5.1.3 Fitting Models with Ordinary Least Squares

Using the statsmodel v0.14.2 Python package and its Ordinary Least Squares (OLS) API,

we can determine the values of αK,S,i and βK,S,j that best fit Equations 5.1 and 5.2 for

each LLM, K on a system, S.

Due to the limitations in testing models on systems that were not the Argonne Swing

AMD+A100, we only have S for the AMD+A100 system. A summary of the quality of

these fits is included in Table 5.3. As we can see, this model has high explainability for

the effect of input and output tokens on energy and runtime for inference of these different

LLMs.

One of the significant limitations of the models in Table 5.2 is their specific fit for a system

and model. Also, due to the compounding nature of the number of input and output

tokens, these models do a poor job of extrapolating beyond their dataset. Therefore,

models must be fit for a system, model, within the expected workload range.

37

Table 5.2: OLS Parameters Across Models for S=Swing AMD+A100

LLM (#Params) Energy Model (eK) Runtime Model (rK)

αK,0 αK,1 αK,2 βK,0 βK,1 βK,2

Falcon (7B) -8.81 41.28 8.91e-02 -2.45e-02 1.07e-01 2.42e-04
Falcon (40B) -20.76 197.37 2.35e-01 -3.61e-02 3.62e-01 4.02e-04
Llama-2 (7B) -3.89 31.52 4.27e-02 -1.00e-02 8.35e-02 1.07e-04
Llama-2 (13B) -6.79 56.01 7.29e-02 -1.74e-02 1.43e-01 1.85e-04
Llama-2 (70B) -12.03 414.82 3.15e-01 -3.12e-02 7.03e-01 5.33e-04
Mistral (7B) -3.12 31.69 3.53e-02 -7.80e-03 8.10e-02 8.10e-02

Mixtral (8x7B) -8.48 105.54 9.86e-02 -1.34e-02 2.96e-01 1.50e-04

Table 5.3: Summary of OLS Regression Results Across Models

LLM (#Params) Energy Model (eK) Runtime Model (rK)

R2 F-statistic P-value R2 F-statistic P-value

Falcon (7B) 0.964 681.2 2.53e-55 0.962 651.1 1.35e-54
Falcon (40B) 0.972 904.5 1.78e-60 0.976 1073 2.74e-63
Llama-2 (7B) 0.973 942.3 3.76e-61 0.972 1032 1.19e-62
Llama-2 (13B) 0.972 887.8 3.60e-60 0.972 907.0 1.60e-60
Llama-2 (70B) 0.976 1022 6.66e-62 0.980 1230 6.23e-65
Mistral (7B) 0.975 997.0 1.70e-61 0.976 1039 3.62e-62

Mixtral (8x7B) 0.980 1238 4.97e-65 0.992 3139 2.23e-80

5.2 Energy-Optimal Hybrid Data Center for Serving

a Single LLM

Considering the performance results we collect from multiple systems, we notice that

there is an energy-optimal way to serve a single LLM with a hybrid data center with a

combination of M1 Pros and AMD+A100s. The intuition behind this is that the energy

expended per token for the M1 Pro is lower than that of the AMD+A100 up to a certain

point in the number of input and output tokens as seen in Figures 4.1(d) and 4.2(d).

However, the energy efficiency characteristics are different when varying the number of

input and output tokens, and therefore, we will proceed with separate analyses.

For the following section, we consider the specific case of only hosting one LLM, Llama-2

(7B), in a sufficiently large hybrid data center with M1-Pros and A100s. Then, we have

some workload, Q, for an LLM, which is a set of input tokens with known output tokens.

5.2.1 Our Workload and Datasets

To capture realistic LLM workloads, we utilize fine-tuning datasets from HuggingFace,

including a large set of input queries with their associated answers. Fine-tuning datasets

utilize synthetic questions and answers from large models like GPT-4 to refine the weights

38

and parameters of smaller models [7]. We analyze the token distribution in prompts from

the Alpaca [51], GSM8K [9], and Python Codes 25K [15] dataset, a benchmark dataset

frequently used in model fine-tuning. Alpaca comprises 52002 prompts, offering a diverse

range of lengths akin to a typical workload in systems like GPT-4 [38]. GSM8k is a

collection of 8792 prompts of grade-school math problems and their answers from GPT-4.

Python Codes 25K comprises 24813 programming task prompts with examples of Python

solutions. The distribution of input and output tokens is a proxy for understanding the

variegated nature of LLM workloads.

0 50 100 150 200 250
Number of Input Tokens

0.000

0.025

0.050

0.075

0.100

0.125

D
en

si
ty

Alpaca GSM8K Python Codes

(a) Input Tokens

0 200 400 600
Number of Output Tokens

0.000

0.002

0.004

0.006

0.008

D
en

si
ty

Alpaca GSM8K Python Codes

(b) Output Tokens

Figure 5.1: Kernel Density Estimation of Token Count Distribution for Alpaca [51],
GSM8K [9], and Python Codes [15]

5.2.2 A Threshold-Based Solution

Section 3.1 presents a formulation for dividing a workload among multiple systems to

minimize energy consumption and runtime. This problem is a non-trivial GAP to solve.

However, due to the high runtime and poor energy efficiency performance of the Palmetto

Intel+V100 system, we only consider a data center with M1-Pro and AMD+A100, such

that S = {M1, A100}. With only two systems, we can consider a workload assignment

solution strictly based on a threshold for the number of input tokens, output tokens, or

the product of these. Since we are only using one LLM and two systems, we drop the K

index and proceed with just eM1 and eA100.

Formulating Our Threshold Approach

In this solution, we take a cutoff threshold, τ ∗in, for input token count. Our solution

dictates that queries with τin ≤ τ ∗in tokens are processed on M1-Pro accelerators, which

are energy efficient while handling smaller token workloads. Conversely, queries with

τin > τ ∗in tokens leverage the greater computational ability of A100 GPUs, which offer

greater energy efficiency for larger tasks. Below, we use a unit-step function, such that

u(τ) = 1 if τ ≥ 0 and 0 if τ < 0.

The energy component of our cost function, split over the input token threshold, is as

39

follows:

ETotal,in(Q, τ ∗in) =
∑

(τin,τout)∈Q

u(τ ∗in − τin)eM1(τin, τout) + (1− u(τ ∗in − τin))eA100(τin, τout),

(5.3)

where ETotal,in represents the total energy consumption for a given dataset of input lengths

τ ∗in and eM1(τin, τout) and eA100(τin, τout) denote the energy consumption for varying the

input token size for the M1-Pro and A100 systems, respectively.

Similarly, we can formulate a solution that depends only on a threshold τ ∗out for the number

of output tokens. This method is the same concept as for the input tokens, except this

time, we have different values in the unit-step function for the τout output tokens. We

revise our performance model as follows:

ETotal,out(Q, τ ∗out) =
∑

(τin,τout)∈Q

u(τ ∗out−τout)eM1(τin, τout)+(1−u(τ ∗out−τout))eA100(τin, τout),

(5.4)

Considering that the formulation of our energy consumption models in Equation 5.1

includes a product interaction effect, we can also perform a product threshold, where we

consider a threshold for τinτout. Here, we update our step function to include a product

of τ ∗inτ
∗
out. Then, our total energy consumption model becomes

ETotal,prod(Q, τ ∗inτ
∗
out) =

∑
(τin,τout)∈Q

u(τ ∗inτ
∗
out − τinτout)eM1(τin, τout)

+ (1− u(τ ∗inτ
∗
out − τinτout))eA100(τin, τout),

(5.5)

The models for total runtime follow the same formulation as Equations 5.3, 5.4, and 5.5

exchanging rM1 and rA100 for eM1 and eA100.

5.2.3 Simulation Results

Using these models, we include plots that show the total energy consumption and runtime

for our three different datasets in Figures 5.2 and 5.3, respectively. The method color refers

to whether we are changing the input, output, or product threshold or using just one chip

type. To keep all the methods on the same plot, we take the square root of the product

threshold to align it on the same scale as the other methods. We use the line style for

“System Type” to denote whether we are considering “Hybrid” for a method using both

kinds of hardware or “Full” for just one.

Due to the M1-Pro’s inability to generate more than 512 output tokens, we have only

considered input and output thresholds until now.

Figure 5.2 illustrates the energy consumption of a hybrid data center as we shift the

thresholds for input tokens (τ ∗in), output tokens (τ ∗out), and their product (
√
τ ∗inτ

∗
out). The

results demonstrate that different threshold methods have distinct impacts on energy

40

0 200 400
Threshold

0

20

40

60

80
To

ta
l E

ne
rg

y
(k

W
h)

Alpaca

0 200 400
Threshold

0

2

4

6

8

10 GSM8K

0 200 400
Threshold

0

20

40

60 Python Codes 25K
Method
Input Threshold
Output Threshold
Product Threshold
M1-Pro
AMD+A100
System Type
Hybrid
Full

Figure 5.2: Energy Consumption for Shifting the Threshold of τ ∗in, τ
∗
out, and

√
τ ∗inτ

∗
out.

0 200 400
Threshold

0

25

50

75

100

M
ea

n
R

un
tim

e
(s

) Alpaca

0 200 400
Threshold

0

50

100

GSM8K

0 200 400
Threshold

0

100

200

Python Codes 25K Method
Input Threshold
Output Threshold
Product Threshold
M1-Pro
AMD+A100
System Type
Hybrid
Full

Figure 5.3: Mean Runtime per Query for Shifting the Threshold of τ ∗in, τ
∗
out, and

√
τ ∗inτ

∗
out.

consumption across the datasets.

Using the number of input tokens as a threshold results in a varied pattern of energy

consumption reduction for all datasets depending on the distribution of the tokens in the

dataset. For instance, with the Alpaca dataset, energy consumption decreases rapidly as

the threshold increases due to most of the queries having few input tokens, as shown in

Figure 5.1. The output threshold works oppositely to the input threshold. For example,

in the Alpaca case, since output tokens have a more even distribution, shifting the output

token threshold results in a more gradual change in energy consumption. The product

method combines input and output token sizes, providing a more balanced approach. The

energy consumption trends follow a middle path between the input and output threshold

methods, offering a compromise that leverages the strengths of both M1-Pro and A100

systems.

Figure 5.3 shows the runtime implications of shifting the thresholds for input tokens,

output tokens, and their product. As the input threshold increases, the mean runtime

increases across the board due to the M1-Pro being nearly 6× slower than the A100. As

with energy consumption, the question is how quickly this threshold moves tasks to the

other chip type. This result hinges entirely on the distribution of input and output tokens.

The runtime trend for the output threshold method follows a similar pattern to the input

threshold but with smoother increases. The product threshold method results in a more

stable runtime pattern. Considering both input and output token sizes, this method effec-

tively balances the workload distribution, falling between the input and output threshold

curves. We find that out of the tested solutions, the product threshold method offers a

41

balanced approach for managing runtime, combining the efficiency of M1-Pro with the

computational capabilities of A100.

5.2.4 Balancing Energy Efficiency and Runtime Performance

Our analysis of both input and output token processing within a hybrid, heterogeneous

data center framework has led to the identification that depending on the distribution

and number of input and output tokens, we can strategically allocate tasks to M1 Pro

systems or A100 GPUs to optimize energy efficiency.

Shifting the token distribution leverages the M1 Pro’s superior energy efficiency for input

and output tasks up to the threshold, beyond which we utilize the A100’s computational

power. This policy saves energy as the more energy-efficient M1-Pro handles tasks with

fewer tokens for outputs up to the threshold. However, this energy optimization comes

at the expense of increased runtime, which is particularly noticeable in output token

generation where the M1 Pro, despite its efficiency, can not match the A100’s speed.

The energy-runtime trade-off presents a favorable scenario for applications with low run-

time sensitivity. For instance, batch processing of LLM tasks, such as overnight data anal-

yses or non-time-critical computations, can benefit significantly from this energy-efficient

configuration.

5.3 Offline Query Routing to Multiple LLMs

If we consider a data center with multiple LLMs and only one kind of CPU+GPU

(e.g., AMD+A100), we can consider routing workloads to different LLMs. The motiva-

tion for this technique is that there is a trade-off in attempting to maximize the average

accuracy of responses from an ensemble of LLMs and minimize the energy and runtime

expended. We hypothesize that we can find an optimal workload division of queries across

different LLMs offline by using models that deterministically estimate energy and runtime.

5.3.1 Representing Workload Routing as an LP Problem

Using our runtime and energy consumption models from Table 5.2, we can represent the

problem outlined in Section 3.2.2 for workload-aware routing problems in an LP solver.

Using PuLP (v.2.8.0), a Python package designed for solving optimization problems like

that we formulate in Equation 3.5, we encode our query workload of input and output

tokens with a set of binary variables that indicate which model will process that pair of

tokens. Then, we convert the given constraints in Equation 3.6–3.8 using this format to

route our workload to different models effectively.

For this example, we consider a data center serving the three Llama-2 models of 7B,

13B, and 70B parameters. Assume that our set K = {1, 2, 3} enumerates those models,

42

respectively. A parameter that affects our optimization problem significantly is the data

center partition γi. In our evaluation, we choose γ1 = 0.05, γ2 = 0.2, and γ3 = 0.75. We

assume that each model has enough GPUs and instances so that we can assign each query

to an LLM without delay.

As we show in Table 4.1 and Figures 4.1 and 4.2, an LLM with a larger parameter count

has greater accuracy but also greater runtime and energy consumption for each input

and output token. It is reasonable to host differently sized models to allow us to serve

inference requests more runtime and energy efficiently with a trade-off of slightly lower

accuracy.

With this, we can use the models for energy and runtime in Equations 5.1 and 5.2 that

we find for each LLM from OLS regression and our function to capture accuracy from

Equation 3.4 to calculate the costs associated with Equation 3.5. For our sample workload,

we use a subset of 200 queries from the Alpaca dataset [51] due to the NP-hard complexity

of solving this problem, as described in Section 5.5.

5.3.2 Results of Offline Routing

Figure 5.4 shows the trade-offs in energy consumption, mean runtime, and accuracy by

varying the operational parameter ζ while routing queries to different models. We com-

pare this hybrid approach to the runtime, accuracy, and energy consumption of three

alternatives: using only one model to process all the queries, round-robin routing, and

random routing. We use the line style, “Scheduler” to denote whether we are routing

using some kind of scheduling algorithm or just sending all queries to one kind of LLM.

0.00 0.25 0.50 0.75 1.00
Zeta

0

1

2

3

4

To
ta

l E
ne

rg
y

(k
W

h)

(a) Energy Consumption

0.00 0.25 0.50 0.75 1.00
Zeta

0

20

40

60

80

100

M
ea

n
R

un
tim

e
(s

)

(b) Mean Runtime

0.00 0.25 0.50 0.75 1.00
Zeta

50.0

52.5

55.0

57.5

60.0

62.5

65.0

A
cc

ur
ac

y
(%

)

Method
Llama-2 (7B)
Llama-2 (13B)
Llama-2 (70B)
Round Robin
Random
Offline
Scheduler
True
False

(c) Accuracy

Figure 5.4: Varying Operational Parameter ζ for Offline Simulation. Due to very similar
allocations of queries, the round-robin and random routing lines are indistinguishable

In Figure 5.4(a), as ζ increases from 0 to 1.0, there is a noticeable trend in energy con-

sumption across different simulation scenarios. When ζ is low, energy consumption is

high because the system prioritizes accuracy over energy efficiency. This trend is evident

in the figures showing energy consumption, where energy usage decreases as ζ increases,

indicating that higher ζ values lead to more energy-efficient routing decisions, sacrificing

accuracy for energy savings. Similarly, Figure 5.4(b) shows that the mean runtime per

query decreases with increasing ζ. A low ζ value results in longer runtimes as the sys-

43

tem routes queries to models that provide higher accuracy but are less efficient in time

and energy. Conversely, higher ζ values result in shorter runtimes, as the system favors

more energy and time-efficient models over the most accurate ones. Figure 5.4(c) demon-

strates the accuracy-cost trade-off, with incrementally more accuracy requiring significant

increases in runtime and energy consumption.

Our solution allows data center operators to navigate the trade-off space using the param-

eter ζ. For example, they could provide higher accuracy when there is an energy surplus

or lower energy prices and deliver faster and lower energy responses during peak loads,

though with slightly diminished accuracy. This flexibility is important for adapting to dif-

ferent operational scenarios. Overall, our proposed offline routing algorithm demonstrates

its capability to optimize energy consumption and runtime while maintaining acceptable

levels of accuracy, proving its effectiveness in managing workloads in a multi-LLM data

center environment.

5.4 Online Query Routing to Multiple LLMs

As we have presented our results for the offline routing problem, we now consider the case

of real-time data center routing queries to different LLMs as formulated in Algorithm 1.

Here, we present the energy, accuracy, waiting time, and runtime results for considering

a spectrum of ζ values for our cost function in Algorithm 1. We also show the effects of

incorporating a queue busyness penalty like in Algorithm 2. Finally, we demonstrate the

impact of varying the arrival rate λ on our quantities of interest.

5.4.1 Simulation Model

In the following simulation, we consider a data center with Nsystem = 16000 A100 GPUs

hosting Llama-2 7B, 13B, and 70B instances. We choose this amount to match the

Meta system mentioned in this article [46]. The occupancy values for these models are

γ1 = 0.05, γ2 = 0.2, γ3 = 0.75, respectively. As a reminder, using nK as the minimum

GPUs required for each LLM from Table 4.1, there are
⌊
γKNsystem

nK

⌋
instances of each LLM

K within our system. In this case, there are 800 instances of Llama-2 (7B), 3200 instances

of Llama-2 (13B), and 3000 instances of Llama-2 (70B).

For our workload, Q(t), we again use the Alpaca dataset [51]. We assume all queries

arrive in a time window [0, T]. We model these arrivals as a Poisson process with rate

λ = |Q(T)|/T . After a query is routed to an LLM, it is placed in an unbounded first

come, first served M/D/1 queue to wait until an instance is available. Once an instance

of the LLM is available, the query is popped from the queue to that instance, where we

deterministically estimate its runtime via our runtime model, rK .

The M/D/1 queue model allows us to predict each query’s average waiting time and system

44

time. The average waiting time Wq in an M/D/1 queue is given by the formula [25]:

Wq,K =
λσ2

K

2(1− λσK)
,

where σK is the mean model runtime for a query for a model K. We can approx-

imate σK by taking a mean of rK values for a sample set of queries Q′ such that

σK ≈ 1
|Q′|
∑

(τin,τout)∈Q′ rK(τin, τout). Given that the runtime inference takes is determinis-

tic, and the arrival process is Poisson, the service time for a generic query, WK(τin, τout)

(total time a query spends in the system, including waiting time) is:

WK(τin, τout) = Wq,K + rK(τin, τout).

As we will show, we can lower the mean service time using a penalty associated with

routing to busy queues, as shown in Algorithm 2. Also, the value of λ can affect the

routing outcomes. Therefore, we will explore the impacts of this parameter on energy,

runtime, accuracy, and mean query wait time.

5.4.2 Results for Varying Operational Parameter, ζ

As the operational parameter ζ increases from 0 to 1.0, there is a noticeable trend in

energy consumption, mean service time, and accuracy. For these simulations, we assume

all 52002 arrivals occur within 10000 seconds, meaning that λ = 5.2 queries/s. As in the

offline case, we use the line style, “Scheduler” to denote whether we are routing using

some kind of scheduling algorithm or just sending all queries to one kind of LLM. We

note that we do not incorporate any wait time for results without a scheduler. Also, we

assume the energy of a query residing in a queue is negligible.

When ζ is low, energy consumption and accuracy are high, as the system prioritizes accu-

racy over energy efficiency. This effect is evident in the figures showing energy consump-

tion (Figures 5.5(a) and 5.6(a)) where energy usage decreases as ζ increases, indicating

that higher ζ values lead to more energy-efficient routing decisions, giving up some accu-

racy for energy savings. However, the mean service time increases with increasing ζ for

no queue awareness, while decreasing when we introduce queue awareness (Figures 5.5(b)

and 5.6(b)). This effect is due to the dominating behavior that waiting can have when we

do not consider the current utilization of the models. Without considering the length of

queues, services cannot be as responsive to requests, particularly when prioritizing energy

efficiency. Accuracy shows an inverse relationship with ζ (Figures 5.5(c) and 5.6(c)). In

general, the queue awareness maintains a lower range of energy, runtime, and accuracy

values with changes in ζ.

As discussed with mean service time, the average wait time also varies with ζ. Without

queue awareness, the wait time is significantly higher than the round-robin and random

45

0.00 0.25 0.50 0.75 1.00
Zeta

0

200

400

600

800

1000

To
ta

l E
ne

rg
y

(k
W

h)

(a) Energy Consumption

0.00 0.25 0.50 0.75 1.00
Zeta

0

200

400

600

800

1000

1200

M
ea

n
S

er
vi

ce
 T

im
e

(s
)

(b) Mean Service Time

0.00 0.25 0.50 0.75 1.00
Zeta

50.0

52.5

55.0

57.5

60.0

62.5

65.0

A
cc

ur
ac

y
(%

)

Method
Llama-2 (7B)
Llama-2 (13B)
Llama-2 (70B)
Round Robin
Random
Online
Scheduler
True
False

(c) Accuracy

Figure 5.5: Varying Operational Parameter ζ for Online Simulation without Queue Aware-
ness (λ = 5.2 queries/s). Due to very similar query allocations, the round-robin and
random routing lines are indistinguishable.

0.00 0.25 0.50 0.75 1.00
Zeta

0

200

400

600

800

1000

To
ta

l E
ne

rg
y

(k
W

h)

(a) Energy Consumption

0.00 0.25 0.50 0.75 1.00
Zeta

0

20

40

60

80

100

120

M
ea

n
S

er
vi

ce
 T

im
e

(s
)

(b) Mean Service Time

0.00 0.25 0.50 0.75 1.00
Zeta

50.0

52.5

55.0

57.5

60.0

62.5

65.0

A
cc

ur
ac

y
(%

)

Method
Llama-2 (7B)
Llama-2 (13B)
Llama-2 (70B)
Round Robin
Random
Online
Scheduler
True
False

(c) Accuracy

Figure 5.6: Varying Operational Parameter ζ for Online Simulation with Queue Awareness
(λ = 5.2 queries/s). Due to very similar query allocations, the round-robin and random
routing lines are indistinguishable.

routing values, as shown in Figure 5.7(b). Incorporating queue awareness reduces the

average wait time by nearly three orders of magnitude, especially for higher ζ values. By

including a penalty based on how busy a queue is, we can distribute the workload more

evenly across models and avoid overloading any single model. A drawback of this method

is that we have to operate within a smaller range of accuracy and energy consumption,

yet in cases where interactive support is necessary, then this is an important factor.

0.00 0.25 0.50 0.75 1.00
Zeta

0

200

400

600

800

1000

1200

M
ea

n
W

ai
t T

im
e

(s
)

(a) No Queue Awareness

0.00 0.25 0.50 0.75 1.00
Zeta

0

2

4

6

8

10

12

M
ea

n
W

ai
t T

im
e

(s
)

Round Robin
Random
Online

(b) Queue Awareness

Figure 5.7: Impacts of Varying Operational Parameter ζ for Mean Wait Time for Queries
(λ = 5.2 queries/s)

46

5.4.3 Results for Varying Arrival Rate, λ

A key aspect of testing how robust routing frameworks are is observing how they handle

a spike in arrival traffic. In our formulation, λ represents the average number of query

arrivals per second. Therefore, in these simulations, we show the effects of increasing the

number of queries per second with and without queue awareness.

Without queue awareness, energy consumption decreases with the arrival rate λ. How-

ever, with queue awareness, there is an increase in energy consumption. Figures 5.8(a)

and 5.9(a) illustrate that higher λ values lead to split behavior in energy consumption

based on the algorithm chosen. This difference is significant because, without queue

awareness, when our system is overloaded, it will route queries to the Llama-2 (7B)

model as it can process queries quickly and often with the lowest energy cost. However,

when we consider the lengths of the queues, our system distributes the workload more

evenly across the instances. Mean service time follows a different pattern from energy

consumption in Figures 5.8(b) and 5.9(b). As the arrival rate increases, the query’s mean

service time increases as the wait time does as well. Accuracy follows the same trend as

energy consumption with increasing λ values (Figures 5.8(c) and 5.9(c)).

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

0

200

400

600

800

1000

To
ta

l E
ne

rg
y

(k
W

h)

(a) Energy Consumption

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

0

500

1000

1500

M
ea

n
S

er
vi

ce
 T

im
e

(s
)

(b) Mean Service Time

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

50.0

52.5

55.0

57.5

60.0

62.5

65.0

A
cc

ur
ac

y
(%

)

Method
Llama-2 (7B)
Llama-2 (13B)
Llama-2 (70B)
Round Robin
Random
Online
Scheduler
True
False

(c) Accuracy

Figure 5.8: Varying Arrival Rate λ for Online Simulation without Queue Awareness
(ζ = 0.5). Due to very similar query allocations, the round-robin and random routing
lines are indistinguishable.

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

0

200

400

600

800

1000

To
ta

l E
ne

rg
y

(k
W

h)

(a) Energy Consumption

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

0

200

400

600

800

M
ea

n
S

er
vi

ce
 T

im
e

(s
)

(b) Mean Service Time

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

50.0

52.5

55.0

57.5

60.0

62.5

65.0

A
cc

ur
ac

y
(%

)

Method
Llama-2 (7B)
Llama-2 (13B)
Llama-2 (70B)
Round Robin
Random
Online
Scheduler
True
False

(c) Accuracy

Figure 5.9: Varying Arrival Rate λ for Online Simulation with Queue Awareness (ζ = 0.5).
Due to very similar query allocations, the round-robin and random routing lines are
indistinguishable.

The average wait time increases significantly with λ, mainly when queue awareness is

not considered (Figure 5.10(a)). Queue awareness helps mitigate this effect, as shown in

47

Figure 5.10(b), where the average wait time for our online method is substantially lower

across different λ values. This indicates that incorporating queue length into the routing

decision effectively balances the load and reduces wait times even under high query arrival

rates. At a specific rate of arrivals, the load needs to be shifted to these models, or wait

times will grow very large. Operators can implement elastic scaling for arrivals greater

than ten queries/second to mitigate these wait times. However, solutions like this require

further analysis due to the added runtime and energy costs of starting new instances.

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

0

500

1000

1500

M
ea

n
W

ai
t T

im
e

(s
)

(a) No Queue Awareness

10
2

10
1

10
0

10
1

10
2

10
3

Lambda

0

200

400

600

800

M
ea

n
W

ai
t T

im
e

(s
)

Round Robin
Random
Online

(b) Queue Awareness

Figure 5.10: Impacts of Varying Arrival Rate λ for Mean Query Wait Time (ζ = 0.5)

5.4.4 Discussion of Online Routing Simulations

The results from varying the operational parameter ζ and the arrival rate λ shed light on

the performance and efficiency of our proposed online query routing algorithm.

The varying ζ analysis demonstrates our algorithm’s capability to balance energy con-

sumption, mean service time, and accuracy according to the desired operational prior-

ities. By adjusting ζ, data center operators can effectively manage trade-offs between

energy efficiency and model accuracy. This flexibility is crucial for adapting to different

operational scenarios, such as meeting sustainability goals, mitigating peak usage times,

or during critical tasks where accuracy is paramount.

On the other hand, the results of varying λ highlight the scalability and robustness of

the algorithm under different load conditions. As λ increases, we show that our system

can handle higher query volumes without significant degradation in performance. The

incorporation of queue awareness significantly enhances this capability by distributing the

workload more evenly, thus preventing any single model from becoming a bottleneck. This

ensures that the system can maintain lower average wait times and consistent accuracy

levels, even as the arrival rate of queries increases.

As we can see, the cost calculation that includes queue awareness greatly enhances our

algorithm. The largest improvement comes with improved service time and wait time.

A trade-off, however, is queue awareness makes ζ less effective. The routing resides

48

within a tighter range of accuracy and energy, meaning it cannot explore different kinds

of routing. Considering the improvement in quality of service with lower wait times, this

lack of control is likely beneficial [1, 55].

5.5 Complexity Analysis

Having presented both the online and offline results, we now compare these algorithms

regarding their algorithmic complexity, scalability, and runtime efficiency.

5.5.1 Offline Algorithm Complexity

The offline algorithm utilizes an LP approach, with its complexity derived from multi-

ple factors. The algorithm calculates energy and accuracy costs for each query across

all models, resulting in a complexity of O(K × |Q|) for each type of cost calculation,

where K is the number of models and |Q| is the number of queries. Setting up the LP

involves implementing the constraints from Equations 3.6–3.8. The formulation of these

constraints has a complexity of O(K × |Q|) for assignment constraints and O(K × |Q|)
for workload constraints, resulting in an overall formulation complexity of O(K × |Q|).

Solving the LP can be computationally intensive, mainly since the problem resembles

a multidimensional multi-choice knapsack problem (MMKP), which is known to be NP-

hard [43]. The Coin-Or Branch and Cut (CBC) [16] solver used by PuLP employs branch-

and-bound and branch-and-cut algorithms to solve such problems. The worst-case com-

plexity for these methods is exponential, typically O(K |Q|) for a K-MMKP problem [33].

However, CBC’s implementation incorporates several heuristics and optimization tech-

niques, often leading to much better performance in practice.

5.5.2 Online Algorithm Complexity

The online algorithm processes each incoming query based on current and limited histor-

ical information, offering a more scalable approach. The cost of assigning each query to

each model is calculated with a complexity of O(K) per query, where K is the number

of models. Determining the optimal model for each query involves comparing these com-

puted costs and updating various system states (queues and historical data), all of which

maintain a complexity of O(K) per query.

A limiting factor to the performance of the online algorithm is the queuing required for

queries. In Section 5.4.1, we discuss that a higher λ (more frequent arrival rate) or a

higher σK (longer processing time per query) leads to longer waiting times in the queue.

However, as we show, Algorithm 2 can effectively mitigate this effect by considering the

length of queues before making a routing decision.

49

5.5.3 Comparison of Online and Offline Algorithms

The online algorithm scales linearly with the number of models per query, making it more

manageable in real-time applications where queries arrive sequentially. This scalability

and reduced complexity per query make the online algorithm more runtime competitive

compared to the offline approach. While possibly achieving a more optimal allocation

through a global view of all queries, the offline algorithm takes a substantial amount of

runtime and is less adaptable to bursty arrivals.

50

Chapter 6

Discussion and Conclusion

6.1 Discussion of Limitations

While this thesis lays a solid foundation for energy-efficient LLM inference, several known

limitations and areas for improvement exist. Critical areas for exploration include the

following.

While we profile state-of-the-art, efficient, and publicly available LLMs, we do not expand

our test range to include LLMs larger than 70B parameters. We could not do this mainly

due to compute constraints (e.g., the amount of VRAM per node we had access to),

but there are also few publicly available models of this size. Profiling larger models like

Falcon 180B or the model in Dash et al. [10] would help address this limitation in scale.

Similarly, we only consider raw text-based LLM tasks and do not consider multi-modal

features like processing PDFs, audio, and images. Exploring how these factors affect the

energy consumption of these extensive services is essential for optimizing modern use cases.

Finally, we only test our solutions in a simulation. We would benefit from implementing

and testing our proposed algorithms in real-world cloud platforms like AWS, Azure, and

Google Cloud to validate effectiveness at scale.

A possible critique of our work is that we do not use optimization tactics like AlpaServe [30]

or FastServe [57]. However, we see this as a potential strength of our work. First, our

work and framework are independent of optimizations. As long as a model for energy

and runtime captures the performance of an LLM using an optimization tactic, then our

energy-aware serving methodology works the same. Second, our demonstrated energy

consumption and runtime values are an upper bound on what is needed for the outlined

inference tasks. Therefore, examining the impacts of optimization strategies on energy

consumption is out of the scope of this work, yet we hypothesize that our methodology

would work with other methods.

Another point for improvement is in the quantification of accuracy. Using the mean

accuracy from the HuggingFace Leaderboard [5] is a good start to quantifying a model’s

51

capability, however, performing some level of human evaluation or performing a meta-

analysis to determine the achieved accuracy from routing decisions would strengthen this

work.

In future studies beyond the data and methods included, we plan to incorporate broader

sustainability metrics, such as carbon footprint and water usage [28, 29], into the opti-

mization framework, providing a more holistic approach to sustainable computing. De-

veloping adaptive algorithms that dynamically adjust parameters like ζ in real-time based

on current system conditions and workloads could further improve energy efficiency and

performance. We also want to explore adapting our solutions to multiple data center

cases to increase their effectiveness further and significantly improve energy efficiency and

performance. This extension would align our methods with existing work in geographic

load balancing [32], a crucial aspect of modern data center provisioning and operation.

6.2 Conclusion

As we have shown, the deployment of LLMs has high computational and energy demands

that can present substantial challenges. This thesis addressed these challenges by explor-

ing dynamic workload allocation and energy management in heterogeneous data centers

serving LLM inference.

We conducted comprehensive profiling of several LLM families and architectures, including

Falcon, Llama-2, and Mistral, across diverse hardware configurations. Our experiments

highlighted the intricate trade-offs between model complexity, input/output token sizes,

energy consumption, and runtime. These insights informed the development of predictive

models for energy and runtime, which are crucial for optimizing data center operations.

Key contributions of this work include the formulation of a workload-aware hybrid data

center model that dynamically balances energy efficiency and runtime based on oper-

ational priorities. We devised an offline routing algorithm that partitions and directs

inference workloads to minimize energy use and runtime while maintaining high accuracy.

This algorithm features a tunable parameter, ζ, allowing operators to adjust the balance

between energy efficiency and accuracy to suit different scenarios. Our online routing

approach also incorporates queue-awareness, ensuring efficient resource utilization and

reduced wait times even under variable workloads.

52

Bibliography

[1] Megha Agarwal, Asfandyar Qureshi, Linden Li Nikhil Sardana, Ju-

lian Quevedo, and Daya Khudia. 2023. LLM Inference Performance

Engineering: Best Practices. https://www.databricks.com/blog/

llm-inference-performance-engineering-best-practices

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli,

Ruxandra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien

Launay, Quentin Malartic, Daniele Mazzotta, Badreddine Noune, Baptiste Pan-

nier, and Guilherme Penedo. 2023. The Falcon Series of Open Language Models.

arXiv:2311.16867 [cs.CL]

[3] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li,

Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, and

Yuxiong He. 2022. DeepSpeed-inference: enabling efficient inference of transformer

models at unprecedented scale. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis (Dallas, Texas)

(SC ’22). IEEE Press, Article 46, 15 pages.

[4] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene Zhang.

2023. Treehouse: A Case For Carbon-Aware Datacenter Software. SIGENERGY

Energy Inform. Rev. 3, 3 (oct 2023), 64–70. https://doi.org/10.1145/3630614.

3630626

[5] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert,

Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023. Open

LLM Leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_llm_

leaderboard.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Ad-

53

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://doi.org/10.1145/3630614.3630626
https://doi.org/10.1145/3630614.3630626
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

vances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,

R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc.,

1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[7] Jiuhai Chen and Jonas Mueller. 2024. Automated Data Curation for Robust Lan-

guage Model Fine-Tuning. arXiv:2403.12776 [cs.CL]

[8] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and

Rajini Wijayawardana. 2023. Reducing the Carbon Impact of Generative AI In-

ference (Today and in 2035). In Proceedings of the 2nd Workshop on Sustainable

Computer Systems (Boston, MA, USA) (HotCarbon ’23). Association for Comput-

ing Machinery, New York, NY, USA, Article 11, 7 pages. https://doi.org/10.

1145/3604930.3605705

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,

Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,

Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math Word

Problems. arXiv:2110.14168 [cs.LG]

[10] Sajal Dash, Isaac Lyngaas, Junqi Yin, Xiao Wang, Romain Egele, Guojing Cong,

Feiyi Wang, and Prasanna Balaprakash. 2023. Optimizing Distributed Training on

Frontier for Large Language Models. arXiv:2312.12705 [cs.DC]

[11] Radosvet Desislavov, Fernando Mart́ınez-Plumed, and José Hernández-Orallo. 2023.

Trends in AI inference energy consumption: Beyond the performance-vs-parameter

laws of deep learning. Sustainable Computing: Informatics and Systems 38 (2023),

100857. https://doi.org/10.1016/j.suscom.2023.100857

[12] Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. 2023. Gpts are

gpts: An early look at the labor market impact potential of large language models.

arXiv preprint arXiv:2303.10130 (2023).

[13] Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico Fi-

carelli, and Daniele Cesarini. 2023. SYnergy: Fine-grained Energy-Efficient Hetero-

geneous Computing for Scalable Energy Saving. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis. 1–

13.

[14] William Fedus, Jeff Dean, and Barret Zoph. 2022. A Review of Sparse Expert Models

in Deep Learning. arXiv:2209.01667 [cs.LG]

[15] Fly. 2024. Python Codes 25k. https://huggingface.co/datasets/flytech/

python-codes-25k Accessed: 2024-05-12.

[16] John Forrest, Ted Ralphs, Stefan Vigerske, Haroldo Gambini Santos, John Forrest,

54

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3604930.3605705
https://doi.org/10.1145/3604930.3605705
https://doi.org/10.1016/j.suscom.2023.100857
https://huggingface.co/datasets/flytech/python-codes-25k
https://huggingface.co/datasets/flytech/python-codes-25k

Lou Hafer, Bjarni Kristjansson, Edwin Straver, Miles Lubin, Jan-Willem, Samuel

Brito, Matthew Saltzman, Bruno Pitrus, and Fumiaki Matsushima. 2023. coin-

or/Cbc: Release releases/2.10.11. https://doi.org/10.5281/zenodo.10041724

[17] Diandian Gu, Xintong Xie, Gang Huang, Xin Jin, and Xuanzhe Liu. 2023. Energy-

Efficient GPU Clusters Scheduling for Deep Learning. arXiv:2304.06381 [cs.DC]

[18] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn

Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Under-

standing. arXiv:2009.03300 [cs.CY]

[19] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor

Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl,

Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driess-

che, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen,

Jack W. Rae, Oriol Vinyals, and Laurent Sifre. 2022. Training Compute-Optimal

Large Language Models. arXiv:2203.15556 [cs.CL]

[20] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021.

Characterization and prediction of deep learning workloads in large-scale GPU data-

centers. In Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC ’21). Association for Computing Ma-

chinery, New York, NY, USA, Article 104, 15 pages. https://doi.org/10.1145/

3458817.3476223

[21] Hongpeng Huo, Chongchong Sheng, Xinming Hu, and Baifeng Wu. 2012. An energy

efficient task scheduling scheme for heterogeneous GPU-enhanced clusters. In 2012

International Conference on Systems and Informatics (ICSAI2012). IEEE, 623–627.

[22] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph

Gonzalez, Kurt Keutzer, and Ion Stoica. 2020. Checkmate: Breaking the Memory

Wall with Optimal Tensor Rematerialization. In Proceedings of Machine Learning

and Systems 2020. 497–511.

[23] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, and et al. 2023. Mistral

7B. arXiv:2310.06825 [cs.CL]

[24] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche

Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou

Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,

Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep

Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet,

Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2024. Mix-

tral of Experts. arXiv:2401.04088 [cs.LG]

55

https://doi.org/10.5281/zenodo.10041724
https://doi.org/10.1145/3458817.3476223
https://doi.org/10.1145/3458817.3476223

[25] S. Keshav. 2012. Mathematical Foundations of Computer Networking. Pearson Ed-

ucation. https://books.google.co.uk/books?id=KI9KDgzH52cC

[26] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao

Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Memory Man-

agement for Large Language Model Serving with PagedAttention. In Proceedings of

the 29th Symposium on Operating Systems Principles (SOSP ’23). Association for

Computing Machinery, New York, NY, USA, 611–626. https://doi.org/10.1145/

3600006.3613165

[27] Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Clover: To-

ward Sustainable AI with Carbon-Aware Machine Learning Inference Service. In Pro-

ceedings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis (SC ’23). Association for Computing Machinery, New York,

NY, USA, Article 20, 15 pages. https://doi.org/10.1145/3581784.3607034

[28] Pengfei Li, Jianyi Yang, Mohammad A. Islam, and Shaolei Ren. 2023. Making AI

Less ”Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models.

arXiv:2304.03271 [cs.LG]

[29] Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren. 2024. Towards Environ-

mentally Equitable AI via Geographical Load Balancing. arXiv:2307.05494 [cs.AI]

[30] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin,

Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.

2023. AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learn-

ing Serving. In 17th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI 23). USENIX Association, Boston, MA, 663–679. https:

//www.usenix.org/conference/osdi23/presentation/li-zhouhan

[31] Qianlin Liang, Walid A Hanafy, Ahmed Ali-Eldin, and Prashant Shenoy. 2023.

Model-driven cluster resource management for ai workloads in edge clouds. ACM

Transactions on Autonomous and Adaptive Systems 18, 1 (2023), 1–26.

[32] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan L.H.

Andrew. 2011. Greening geographical load balancing. SIGMETRICS Perform. Eval.

Rev. 39, 1 (jun 2011), 193–204. https://doi.org/10.1145/2007116.2007139

[33] S. Martello and P. Toth. 1990. Knapsack Problems: Algorithms and Computer Im-

plementations. Wiley. https://books.google.co.uk/books?id=0dhQAAAAMAAJ

[34] Timothy R. McIntosh, Teo Susnjak, Tong Liu, Paul Watters, and Malka N. Hal-

gamuge. 2024. Inadequacies of Large Language Model Benchmarks in the Era of

Generative Artificial Intelligence. arXiv:2402.09880 [cs.AI]

[35] Xinxin Mei, Xiaowen Chu, Hai Liu, Yiu-Wing Leung, and Zongpeng Li. 2017. Energy

56

https://books.google.co.uk/books?id=KI9KDgzH52cC
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3581784.3607034
https://www.usenix.org/conference/osdi23/presentation/li-zhouhan
https://www.usenix.org/conference/osdi23/presentation/li-zhouhan
https://doi.org/10.1145/2007116.2007139
https://books.google.co.uk/books?id=0dhQAAAAMAAJ

efficient real-time task scheduling on CPU-GPU hybrid clusters. In IEEE INFOCOM

2017-IEEE Conference on Computer Communications. IEEE, 1–9.

[36] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui, and Zhihao

Jia. 2024. SpotServe: Serving Generative Large Language Models on Preemptible

Instances. In Proceedings of the 29th ACM International Conference on Architec-

tural Support for Programming Languages and Operating Systems, Volume 2 (ASP-

LOS ’24). Association for Computing Machinery, New York, NY, USA, 1112–1127.

https://doi.org/10.1145/3620665.3640411

[37] NVIDIA. Accessed 2024. NVIDIA-NVML. https://docs.nvidia.com/deploy/

nvml-api/index.html. Available online.

[38] OpenAI, :, Josh Achiam, Steven Adler, and et al. 2023. GPT-4 Technical Report.

arXiv:2303.08774 [cs.CL]

[39] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Brijesh Warrier, Nithish

Mahalingam, and Ricardo Bianchini. 2024. Characterizing Power Management Op-

portunities for LLMs in the Cloud. In Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, Volume 3 (ASPLOS ’24). Association for Computing Machinery, New York,

NY, USA, 207–222. https://doi.org/10.1145/3620666.3651329

[40] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessan-

dro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien

Launay. 2023. The RefinedWeb Dataset for Falcon LLM: Outperforming Curated

Corpora with Web Data, and Web Data Only. arXiv:2306.01116 [cs.CL]

[41] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,

Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2022.

Efficiently Scaling Transformer Inference. arXiv:2211.05102 [cs.LG]

[42] PowerAPI. 2024. PyJoules: Python-based energy measurement library for various

domains including NVIDIA GPUs. https://github.com/powerapi-ng/pyJoules.

Accessed: 2024-05-31.

[43] Jakob Puchinger, Günther R Raidl, and Ulrich Pferschy. 2006. The core concept for

the multidimensional knapsack problem. In Evolutionary Computation in Combina-

torial Optimization: 6th European Conference, EvoCOP 2006, Budapest, Hungary,

April 10-12, 2006. Proceedings 6. Springer, 195–208.

[44] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Am-

inabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-MoE:

Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI

Scale. In Proceedings of the 39th International Conference on Machine Learning (Pro-

ceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie

57

https://doi.org/10.1145/3620665.3640411
https://docs.nvidia.com/deploy/nvml-api/index.html
https://docs.nvidia.com/deploy/nvml-api/index.html
https://doi.org/10.1145/3620666.3651329
https://github.com/powerapi-ng/pyJoules

Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR,

18332–18346. https://proceedings.mlr.press/v162/rajbhandari22a.html

[45] Lavanya Ramapantulu, Bogdan Marius Tudor, Dumitrel Loghin, Trang Vu, and

Yong Meng Teo. 2014. Modeling the energy efficiency of heterogeneous clusters.

In 2014 43rd International Conference on Parallel Processing. IEEE, 321–330.

[46] Meta Research. [n. d.]. Introducing the AI Research SuperCluster — Meta’s cutting-

edge AI supercomputer for AI research. https://ai.meta.com/blog/ai-rsc/. Ac-

cessed: 2024-05-09.

[47] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael

Jones, William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. 2023.

From Words to Watts: Benchmarking the Energy Costs of Large Language Model

Inference. arXiv:2310.03003 [cs.CL]

[48] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen,

Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. FlexGen: high-

throughput generative inference of large language models with a single GPU. In

Proceedings of the 40th International Conference on Machine Learning (ICML’23).

JMLR.org, Article 1288, 23 pages.

[49] Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri, and Josep Torrellas.

2024. Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of LLM

Inference. arXiv:2403.20306 [cs.AI]

[50] Xiaoyong Tang and Zhuojun Fu. 2020. CPU–GPU utilization aware energy-efficient

scheduling algorithm on heterogeneous computing systems. IEEE Access 8 (2020),

58948–58958.

[51] R. Taori, I. Gulrajani, T. Zhang, and et al. 2024. Stanford alpaca: An instruction

following llama model. https://github.com/tatsu-lab/stanford_alpaca. Ac-

cessed: 2024-01-15.

[52] Gemini Team, Machel Reid, Nikolay Savinov, and et al. 2024. Gemini

1.5: Unlocking multimodal understanding across millions of tokens of context.

arXiv:2403.05530 [cs.CL]

[53] Hugo Touvron, Louis Martin, Kevin Stone, and et al. 2023. Llama 2: Open Founda-

tion and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In

Proceedings of the 31st International Conference on Neural Information Processing

Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red

Hook, NY, USA, 6000–6010.

58

https://proceedings.mlr.press/v162/rajbhandari22a.html
https://ai.meta.com/blog/ai-rsc/
https://github.com/tatsu-lab/stanford_alpaca

[55] Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang, Rui Guo, Xin Wang, Qiang

Wang, Amelie Chi Zhou, and Xiaowen Chu. 2024. Towards Efficient and Reliable

LLM Serving: A Real-World Workload Study. arXiv:2401.17644 [cs.DC]

[56] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an

insightful visual performance model for multicore architectures. Commun. ACM 52,

4 (apr 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[57] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and

Xin Jin. 2023. Fast Distributed Inference Serving for Large Language Models.

arXiv:2305.05920 [cs.LG]

[58] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon

Chun. 2022. Orca: A Distributed Serving System for Transformer-Based Gener-

ative Models. In 16th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI 22). USENIX Association, Carlsbad, CA, 521–538. https:

//www.usenix.org/conference/osdi22/presentation/yu

[59] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019.

HellaSwag: Can a Machine Really Finish Your Sentence? arXiv:1905.07830 [cs.CL]

[60] Juntao Zhao, Borui Wan, Yanghua Peng, Haibin Lin, and Chuan Wu. 2024. LLM-PQ:

Serving LLM on Heterogeneous Clusters with Phase-Aware Partition and Adaptive

Quantization. arXiv:2403.01136 [cs.LG]

[61] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping

Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonza-

lez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Parallelism

for Distributed Deep Learning. arXiv:2201.12023 [cs.LG]

[62] Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You.

2023. Response Length Perception and Sequence Scheduling: An LLM-Empowered

LLM Inference Pipeline. arXiv preprint arXiv:2305.13144 (2023).

59

https://doi.org/10.1145/1498765.1498785
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu

	Introduction
	Related Work
	LLM Inference as a Service
	LLM Cluster Resource Management
	LLM Inference Energy Studies
	Energy-Aware Data Center Scheduling

	Problem Formulations
	Workload Routing in a Heterogeneous Data Center
	Workload Routing in a Data Center Serving Multiple LLMs
	Modeling a Data Center
	Offline Routing Queries to Different LLMs
	Online Routing Incoming Queries to Different LLMs
	Queue-Awareness for Improved Quality of Service

	Results
	Measuring Energy Usage
	NVIDIA GPUs
	Apple Silicon CPU/GPU
	Intel CPUs
	AMD CPUs

	Model Choice
	LLMs Profiled
	Impact of Key-Value Dictionary Caching on Inference Runtime

	LLM Inference Performance on Diverse Clusters
	Hardware Details of Test Systems

	LLM Inference Performance
	Experimental Strategy
	Input Token Analysis
	Output Token Analysis
	Comparing the Input and Output Analyses

	Impacts of Model Size
	Input Token Analysis
	Output Token Analysis
	Comparing the Input and Output Token Analysis

	Energy-Optimal LLM Serving
	Modeling Energy and Runtime for LLMs
	Interdependence of Input and Output Tokens
	Formulating Models for Energy and Runtime
	Fitting Models with Ordinary Least Squares

	Energy-Optimal Hybrid Data Center for Serving a Single LLM
	Our Workload and Datasets
	A Threshold-Based Solution
	Simulation Results
	Balancing Energy Efficiency and Runtime Performance

	Offline Query Routing to Multiple LLMs
	Representing Workload Routing as an LP Problem
	Results of Offline Routing

	Online Query Routing to Multiple LLMs
	Simulation Model
	Results for Varying Operational Parameter,
	Results for Varying Arrival Rate,
	Discussion of Online Routing Simulations

	Complexity Analysis
	Offline Algorithm Complexity
	Online Algorithm Complexity
	Comparison of Online and Offline Algorithms

	Discussion and Conclusion
	Discussion of Limitations
	Conclusion

